Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
55 changes: 55 additions & 0 deletions beta_vae_torch.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,55 @@
import torch
import torch.nn as nn


class BetaVAE(nn.Module):
def __init__(self, input_dim, latent_dim, beta=1.0):
super(BetaVAE, self).__init__()
self.beta = beta

# Encoder
self.encoder = nn.Sequential(
nn.Linear(input_dim, 512),
nn.ReLU(),
nn.Linear(512, 256),
nn.ReLU()
)

self.fc_mu = nn.Linear(256, latent_dim)
self.fc_logvar = nn.Linear(256, latent_dim)

# Decoder
self.decoder = nn.Sequential(
nn.Linear(latent_dim, 256),
nn.ReLU(),
nn.Linear(256, 512),
nn.ReLU(),
nn.Linear(512, input_dim),
nn.Sigmoid()
)

def encode(self, x):
h = self.encoder(x)
mu = self.fc_mu(h)
logvar = self.fc_logvar(h)
return mu, logvar

def decode(self, z):
return self.decoder(z)

def reparameterize(self, mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return mu + eps * std

def forward(self, x):
mu, logvar = self.encode(x)
z = self.reparameterize(mu, logvar)
return self.decode(z), mu, logvar


def loss_function(recon_x, x, mu, logvar, beta):
BCE = nn.functional.binary_cross_entropy(recon_x, x, reduction='sum')
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return BCE + beta * KLD

55 changes: 55 additions & 0 deletions pyod/models/beta_vae_torch.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,55 @@
import torch
import torch.nn as nn


class BetaVAE(nn.Module):
def __init__(self, input_dim, latent_dim, beta=1.0):
super(BetaVAE, self).__init__()
self.beta = beta

# Encoder
self.encoder = nn.Sequential(
nn.Linear(input_dim, 512),
nn.ReLU(),
nn.Linear(512, 256),
nn.ReLU()
)

self.fc_mu = nn.Linear(256, latent_dim)
self.fc_logvar = nn.Linear(256, latent_dim)

# Decoder
self.decoder = nn.Sequential(
nn.Linear(latent_dim, 256),
nn.ReLU(),
nn.Linear(256, 512),
nn.ReLU(),
nn.Linear(512, input_dim),
nn.Sigmoid()
)

def encode(self, x):
h = self.encoder(x)
mu = self.fc_mu(h)
logvar = self.fc_logvar(h)
return mu, logvar

def decode(self, z):
return self.decoder(z)

def reparameterize(self, mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return mu + eps * std

def forward(self, x):
mu, logvar = self.encode(x)
z = self.reparameterize(mu, logvar)
return self.decode(z), mu, logvar


def loss_function(recon_x, x, mu, logvar, beta):
BCE = nn.functional.binary_cross_entropy(recon_x, x, reduction='sum')
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return BCE + beta * KLD