Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions src/cpu/cpu_batch_normalization_list.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,11 @@ using namespace dnnl::impl::cpu::x64;
#include "cpu/aarch64/acl_batch_normalization.hpp"
#endif
using namespace dnnl::impl::cpu::aarch64;
#elif DNNL_RV64
#if defined(DNNL_RISCV_USE_RVV_INTRINSICS)
#include "cpu/rv64/rvv_batch_normalization.hpp"
using namespace dnnl::impl::cpu::rv64;
#endif
#endif

namespace dnnl {
Expand All @@ -59,6 +64,7 @@ const std::map<pk_impl_key_t, std::vector<impl_list_item_t>> &impl_list_map() {
CPU_INSTANCE_AARCH64(jit_uni_batch_normalization_fwd_t<sve_256>)
CPU_INSTANCE_AARCH64(jit_uni_batch_normalization_fwd_t<asimd>)
CPU_INSTANCE_AARCH64_ACL(acl_batch_normalization_fwd_t)
CPU_INSTANCE_RV64GCV(rvv_batch_normalization_fwd_t)
CPU_INSTANCE(ncsp_batch_normalization_fwd_t<f32>)
CPU_INSTANCE(ncsp_batch_normalization_fwd_t<bf16>)
CPU_INSTANCE(ncsp_batch_normalization_fwd_t<f16>)
Expand Down
195 changes: 195 additions & 0 deletions src/cpu/rv64/rvv_batch_normalization.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,195 @@
/******************************************************************************
* Copyright 2025 ZTE Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
******************************************************************************/

#include <assert.h>
#include <math.h>
#include <vector>
#include <riscv_vector.h>

#include "common/c_types_map.hpp"
#include "common/dnnl_thread.hpp"
#include "common/type_helpers.hpp"

#include "cpu/rv64/rvv_batch_normalization.hpp"

namespace dnnl {
namespace impl {
namespace cpu {
namespace rv64 {

namespace {

// If per_elem_params is false, uses broadcast scalars mean/sm/sv (mean[0], sm[0], sv[0]).
// If true, loads per-element mean/sm/sv from the provided arrays.
static inline void bn_fwd_kernel_f32(const void *s_base, void *d_base,
size_t len, const float *mean, const float *sm, const float *sv,
bool per_elem_params, const rv64::rvv_postops_t &po) {
const size_t data_size = types::data_type_size(data_type::f32);
for (size_t i = 0; i < len;) {
size_t vl = __riscv_vsetvl_e32m1(len - i);

const float *s_ptr = reinterpret_cast<const float *>(
reinterpret_cast<const char *>(s_base) + i * data_size);
float *d_ptr = reinterpret_cast<float *>(
reinterpret_cast<char *>(d_base) + i * data_size);

vfloat32m1_t vx = __riscv_vle32_v_f32m1(s_ptr, vl);

vfloat32m1_t vmean_v;
vfloat32m1_t vsm_v;
vfloat32m1_t vsv_v;
if (per_elem_params) {
vmean_v = __riscv_vle32_v_f32m1(mean + i, vl);
vsm_v = __riscv_vle32_v_f32m1(sm + i, vl);
vsv_v = __riscv_vle32_v_f32m1(sv + i, vl);
} else {
vmean_v = __riscv_vfmv_v_f_f32m1(mean[0], vl);
vsm_v = __riscv_vfmv_v_f_f32m1(sm[0], vl);
vsv_v = __riscv_vfmv_v_f_f32m1(sv[0], vl);
}

vfloat32m1_t vtmp = __riscv_vfsub_vv_f32m1(vx, vmean_v, vl);
vfloat32m1_t vout = __riscv_vfmul_vv_f32m1(vtmp, vsm_v, vl);
vout = __riscv_vfadd_vv_f32m1(vout, vsv_v, vl);
vout = po.apply(vout, vl);

__riscv_vse32_v_f32m1(d_ptr, vout, vl);
i += vl;
}
}

} // namespace

status_t rvv_batch_normalization_fwd_t::execute_forward(
const exec_ctx_t &ctx) const {
const memory_desc_wrapper data_d(pd()->src_md());
const auto dtsrc = pd()->src_md()->data_type;
const int ndims = data_d.ndims();

const dim_t N = pd()->MB();
const dim_t C = pd()->C();
const dim_t D = pd()->D();
const dim_t H = pd()->H();
const dim_t W = pd()->W();

const float eps = pd()->desc()->batch_norm_epsilon;

void *dst = CTX_OUT_MEM(void *, DNNL_ARG_DST);
const void *src = CTX_IN_MEM(const void *, DNNL_ARG_SRC);
const float *mean = CTX_IN_MEM(const float *, DNNL_ARG_MEAN);
const float *var = CTX_IN_MEM(const float *, DNNL_ARG_VARIANCE);
const float *scale = pd()->use_scale()
? CTX_IN_MEM(const float *, DNNL_ARG_SCALE)
: nullptr;
const float *shift = pd()->use_shift()
? CTX_IN_MEM(const float *, DNNL_ARG_SHIFT)
: nullptr;

rv64::rvv_postops_t po = pd()->fused_relu_in_kernel()
? rv64::rvv_postops_t(alg_kind::eltwise_relu)
: rv64::rvv_postops_t(pd()->attr()->post_ops_);

auto off = [&](dim_t n, dim_t c, dim_t d, dim_t h, dim_t w) -> size_t {
switch (ndims) {
case 3: return data_d.off(n, c, w);
case 4: return data_d.off(n, c, h, w);
case 5: return data_d.off(n, c, d, h, w);
default: assert(!"unsupported ndims"); return dim_t(0);
}
};

const bool channels_dense = data_d.blocking_desc().strides[1] == 1;

if (!channels_dense) {
// abx data tag: vectorize over W for fixed channel
parallel_nd(C, N, D, H, [&](dim_t c, dim_t n, dim_t d, dim_t h) {
const float vmean = mean[c];
const float inv_std = 1.0f / sqrtf(var[c] + eps);
const float vscale = scale ? scale[c] : 1.0f;
const float vshift = shift ? shift[c] : 0.0f;
const float sm = vscale * inv_std;
const float sv = vshift;
size_t base_off = off(n, c, d, h, 0);

switch (dtsrc) {
case data_type::f32: {
const size_t data_size
= types::data_type_size(data_type::f32);
const void *s_ptr = reinterpret_cast<const void *>(
reinterpret_cast<const char *>(src)
+ base_off * data_size);
void *d_ptr = reinterpret_cast<void *>(
reinterpret_cast<char *>(dst)
+ base_off * data_size);
const float mean_b[1] = {vmean};
const float sm_b[1] = {sm};
const float sv_b[1] = {sv};
bn_fwd_kernel_f32(s_ptr, d_ptr, static_cast<size_t>(W),
mean_b, sm_b, sv_b, /*per_elem_params=*/false, po);
break;
}
default:
assert(!"Unsupported data type for RVV batch "
"normalization");
}
});
} else {
// axb data tag: vectorize across channels
auto &grantor = ctx.get_scratchpad_grantor();
float *sm_arr = grantor.template get<float>(
memory_tracking::names::key_bnorm_tmp_mean);
float *sv_arr = grantor.template get<float>(
memory_tracking::names::key_bnorm_tmp_var);
for (dim_t c = 0; c < C; ++c) {
const float inv_std = 1.0f / sqrtf(var[c] + eps);
const float vscale = scale ? scale[c] : 1.0f;
const float vshift = shift ? shift[c] : 0.0f;
sm_arr[static_cast<size_t>(c)] = vscale * inv_std;
sv_arr[static_cast<size_t>(c)] = vshift;
}

parallel_nd(N, D, H, W, [&](dim_t n, dim_t d, dim_t h, dim_t w) {
switch (dtsrc) {
case data_type::f32: {
const size_t data_size
= types::data_type_size(data_type::f32);
size_t base_off = off(n, 0, d, h, w);
const void *s_ptr = reinterpret_cast<const void *>(
reinterpret_cast<const char *>(src)
+ base_off * data_size);
void *d_ptr = reinterpret_cast<void *>(
reinterpret_cast<char *>(dst)
+ base_off * data_size);

bn_fwd_kernel_f32(s_ptr, d_ptr, static_cast<size_t>(C),
mean, sm_arr, sv_arr,
/*per_elem_params=*/true, po);
break;
}
default:
assert(!"Unsupported data type for RVV batch "
"normalization");
}
});
}

return status::success;
}

} // namespace rv64
} // namespace cpu
} // namespace impl
} // namespace dnnl
141 changes: 141 additions & 0 deletions src/cpu/rv64/rvv_batch_normalization.hpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,141 @@
/******************************************************************************
* Copyright 2025 ZTE Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
******************************************************************************/

#ifndef CPU_RV64_RVV_BATCH_NORMALIZATION_HPP
#define CPU_RV64_RVV_BATCH_NORMALIZATION_HPP

#include "common/memory_tracking.hpp"
#include "common/primitive.hpp"

#include "cpu/cpu_batch_normalization_pd.hpp"
#include "cpu/platform.hpp"
#include "cpu/rv64/rvv_postops.hpp"

namespace dnnl {
namespace impl {
namespace cpu {
namespace rv64 {

struct rvv_batch_normalization_fwd_t : public primitive_t {
struct pd_t : public cpu_batch_normalization_fwd_pd_t {
using cpu_batch_normalization_fwd_pd_t::
cpu_batch_normalization_fwd_pd_t;

DECLARE_COMMON_PD_T_("RISCV64GCV", rvv_batch_normalization_fwd_t);

status_t init(engine_t *engine) {
UNUSED(engine);

using namespace data_type;

VDISPATCH_BNORM(is_fwd(), VERBOSE_BAD_PROPKIND);

const data_type_t dtsrc = src_md()->data_type;
const data_type_t dtdst = dst_md()->data_type;
bool types_ok = (dtsrc == f32 && dtdst == f32)
&& platform::has_data_type_support(dtsrc)
&& IMPLICATION(is_training(),
platform::has_training_support(dtsrc));
VDISPATCH_BNORM(types_ok, VERBOSE_UNSUPPORTED_DT);

VDISPATCH_BNORM(!has_zero_dim_memory(), VERBOSE_EMPTY_TENSOR, "");

// Require global stats (G). Flags C/H/R(inference) are optional. Disallow none and A.
VDISPATCH_BNORM(!fuse_norm_add_relu(), VERBOSE_UNSUPPORTED_FEATURE,
"fuse_norm_add_relu not supported");
VDISPATCH_BNORM(use_global_stats(), VERBOSE_UNSUPPORTED_FEATURE,
"stats must already have been computed (use global stats)");
using smask_t = primitive_attr_t::skip_mask_t;
VDISPATCH_BNORM(!(fuse_norm_relu()
&& desc()->prop_kind
== prop_kind::forward_training),
VERBOSE_UNSUPPORTED_FEATURE,
"forward training with fused ReLU is not supported");
// Only support eltwise ReLU without alpha/beta post-op as current rvv_postops requires.
VDISPATCH_BNORM(attr()->has_default_values(smask_t::post_ops),
VERBOSE_UNSUPPORTED_ATTR);
{
const post_ops_t &po = attr()->post_ops_;
bool relu_no_params_ok = true;
if (po.len() == 1) {
const auto &e = po.entry_[0];
relu_no_params_ok = e.is_eltwise()
&& e.eltwise.alg == alg_kind::eltwise_relu
&& e.eltwise.alpha == 0.f && e.eltwise.beta == 0.f;
} else if (po.len() > 1) {
relu_no_params_ok = false;
}
VDISPATCH_BNORM(relu_no_params_ok, VERBOSE_UNSUPPORTED_ATTR);
}
VDISPATCH_BNORM(rv64::rvv_postops_t::post_ops_ok(attr()->post_ops_),
VERBOSE_UNSUPPORTED_ATTR);

// Simplest memory layouts only: plain, dense, same layout src/dst, no blocking/padding.
VDISPATCH_BNORM(
set_default_formats_common(), VERBOSE_UNSUPPORTED_TAG);
const memory_desc_wrapper src_d(src_md());
const memory_desc_wrapper dst_d(dst_md());
VDISPATCH_BNORM(
check_layouts(src_d, dst_d), VERBOSE_UNSUPPORTED_TAG);

fused_relu_in_kernel_ = fuse_norm_relu();
init_scratchpad();

return status::success;
}
bool check_layouts(const memory_desc_wrapper &src_d,
const memory_desc_wrapper &dst_d) const {
// Require plain, dense, no blocking/padding, same plain layout.
bool ndims_ok = utils::one_of(ndims(), 3, 4, 5);
bool plain_dense = src_d.blocking_desc().inner_nblks == 0
&& dst_d.blocking_desc().inner_nblks == 0
&& src_d.is_dense(/*with_padding=*/false)
&& dst_d.is_dense(/*with_padding=*/false);
bool same_layouts = src_d.similar_to(dst_d, /*with_strides=*/true,
/*with_pads=*/false);
return ndims_ok && plain_dense && same_layouts;
}

bool fused_relu_in_kernel() const { return fused_relu_in_kernel_; }

private:
void init_scratchpad() {
using namespace memory_tracking::names;
auto scratchpad = scratchpad_registry().registrar();
// Reserve per-channel temporary buffers for axb (channels-dense) path
scratchpad.template book<float>(key_bnorm_tmp_mean, C());
scratchpad.template book<float>(key_bnorm_tmp_var, C());
}
bool fused_relu_in_kernel_ = false;
};

rvv_batch_normalization_fwd_t(const pd_t *apd) : primitive_t(apd) {}

status_t execute(const exec_ctx_t &ctx) const override {
return execute_forward(ctx);
}

private:
status_t execute_forward(const exec_ctx_t &ctx) const;
const pd_t *pd() const { return (const pd_t *)primitive_t::pd().get(); }
};

} // namespace rv64
} // namespace cpu
} // namespace impl
} // namespace dnnl

#endif // CPU_RV64_RVV_BATCH_NORMALIZATION_HPP
2 changes: 1 addition & 1 deletion src/cpu/rv64/rvv_binary.cpp
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
/******************************************************************************
* Copyright 2025
* Copyright 2025 ZTE Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
Expand Down
2 changes: 1 addition & 1 deletion src/cpu/rv64/rvv_binary.hpp
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
/******************************************************************************
* Copyright 2025
* Copyright 2025 ZTE Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
Expand Down
2 changes: 1 addition & 1 deletion src/cpu/rv64/rvv_binary_kernels.hpp
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
/******************************************************************************
* Copyright 2025
* Copyright 2025 ZTE Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
Expand Down
2 changes: 1 addition & 1 deletion src/cpu/rv64/rvv_eltwise.cpp
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
/*******************************************************************************
* Copyright 2019 Intel Corporation
* Copyright 2025 ZTE Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
Expand Down
2 changes: 1 addition & 1 deletion src/cpu/rv64/rvv_eltwise.hpp
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
/*******************************************************************************
* Copyright 2019 Intel Corporation
* Copyright 2025 ZTE Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
Expand Down
2 changes: 1 addition & 1 deletion src/cpu/rv64/rvv_eltwise_kernels.hpp
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
/******************************************************************************
* Copyright 2025
* Copyright 2025 ZTE Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
Expand Down
Loading
Loading