🗜️Compressing Parquet files using functions.
virtual is a lightweight framework that transparently compresses Parquet files by using functions between columns, all while giving you the same familiar interface you are used to. How virtual works is magic, and is described in our recent research papers (see below).
pip install virtual-parquet
or
git clone https://github.com/utndatasystems/virtual.git && cd virtual
pip install .
A demo can be found at examples/demo-parquet.ipynb.
Simply compress a Pandas DataFrame with virtual.to_format(df):
import pandas as pd
import virtual
df = pd.read_csv('file.csv')
...
virtual.to_format(df, 'file_virtual.parquet')% Virtualization finished: Check out 'file_virtual.parquet'.
Reading in a virtual compress parquet file with virtual.from_format([path]):
import virtual
df = virtual.from_format('file_virtual.parquet')Or directly run SQL queries on the virtualized Parquet file via duckdb with virtual.query([SQL]):
import virtual
virtual.query(
'select avg(price) from read_parquet("file_virtual.parquet") where year >= 2024',
engine = 'duckdb'
)import pandas as pd
import virtual
df = pd.read_csv('file.csv')
functions = virtual.train(df)% Functions saved under
functions.json.
Please do cite our (very) cool work if you use virtual in your work.
@inproceedings{virtual_trl,
title = {{Lightweight Correlation-Aware Table Compression}},
author = {Mihail Stoian and Alexander van Renen and Jan Kobiolka and Ping-Lin Kuo and Josif Grabocka and Andreas Kipf},
booktitle = {NeurIPS 2024 Third Table Representation Learning Workshop},
year = {2024},
url = {https://openreview.net/forum?id=z7eIn3aShi}
}
@inproceedings{virtual_edbt,
author = {Mihail Stoian and Alexander van Renen and Jan Kobiolka and Ping{-}Lin Kuo and Andreas Zimmerer and Josif Grabocka and Andreas Kipf},
editor = {Alkis Simitsis and Bettina Kemme and Anna Queralt and Oscar Romero and Petar Jovanovic},
title = {Virtual: Compressing Data Lake Files},
booktitle = {Proceedings 28th International Conference on Extending Database Technology, {EDBT} 2025, Barcelona, Spain, March 25-28, 2025},
pages = {1066--1069},
publisher = {OpenProceedings.org},
year = {2025},
url = {https://doi.org/10.48786/edbt.2025.90},
doi = {10.48786/EDBT.2025.90},
timestamp = {Mon, 10 Mar 2025 16:32:47 +0100},
biburl = {https://dblp.org/rec/conf/edbt/StoianRKKZGK25.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}