Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
68 changes: 68 additions & 0 deletions C++ algos/Sorting Algos/Mergesort.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,68 @@
#include<iostream>

using namespace std;

void merge(int arr[],int l,int mid,int h)
{
int b[5];
int i=l;
int k=l;
int j=mid+1;
while(i<=mid && j<=h)
{
if(arr[i]<arr[j])
{
b[k]=arr[i];
k++;
i++;
}
else
{
b[k]=arr[j];
k++;
j++;
}
}
while(i<=mid)
{
b[k]=arr[j];
k++;
}
while(j<=h)
{
b[k]=arr[i];
k++;
}
for(int k=0;k<=h;k++)
{
arr[i]=b[k];
}
}

void mergesort(int arr[],int l,int h)
{
int mid=(l+h)/2;
mergesort(arr,l,mid);
mergesort(arr,(mid+1),h);
merge(arr,l,mid,h);
}

int main()
{
int myarr[],n;
cout<<"enter the number of elements"<<endl;
cin>>n;
cout<<"enter"<<n<<elements"<<endl;
for(int i=0;i<n;i++)
{
cin>>myarr[i];
}

mergesort(myarr,0,(n-1));

for(int i=0;i<n;i++)
{
cout<<myarr[i]<<endl;
}
return 0;
}
46 changes: 46 additions & 0 deletions C++ algos/Sorting Algos/Quicksort.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,46 @@
#include<iostream>
#include<iomanip>

using namespace std;

int partition(int arr[],int s,int e)
{
int pivot=arr[e];
int pindex=s;
for(int i=s;i<e;i++)
{
if(arr[i]<pivot)
{
arr[pindex]=arr[i];
pindex++;
}
}
return pindex;
}

void quicksort(int arr,int s,int e)
{
int p=partition(arr,s,e);
quicksort(arr,s,(p-1));
quicksort(arr,(p+1),e);
}

int main()
{
int arr[],n;
cout<<"enter the number of elements to be sorted"<<endl;
cin>>n;
cout<<"enter"<<n<<"elements"<<endl;
for(int i=0;i<n;i++)
{
cin>>arr[i];
}

quicksort(arr,0,n);

for(int i=0;i<n;i++)
{
cout<<arr[i]<<endl;
}
return 0;
}
71 changes: 71 additions & 0 deletions Data Science Project/KNN.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,71 @@
# importing libraries
import numpy as nm
import matplotlib.pyplot as mtp
import pandas as pd

#importing datasets
data_set= pd.read_csv('User_Data.csv')

#Extracting Independent and dependent Variable
x= data_set.iloc[:, [2,3]].values
y= data_set.iloc[:, 4].values

# Splitting the dataset into training and test set.
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test= train_test_split(x, y, test_size= 0.25, random_state=0)

#feature Scaling
from sklearn.preprocessing import StandardScaler
st_x= StandardScaler()
x_train= st_x.fit_transform(x_train)
x_test= st_x.transform(x_test)

#Fitting K-NN classifier to the training set
from sklearn.neighbors import KNeighborsClassifier
classifier= KNeighborsClassifier(n_neighbors=5, metric='minkowski',p=2)classifier.fit(x_train, y_train)


#Predicting the test set result
y_pred= classifier.predict(x_test)

#Creating the Confusion matrix
from sklearn.metrics import confusion_matrix
cm= confusion_matrix(y_test, y_pred)
print("Confusion Matrix : \n",cm)


#Visulaizing the trianing set result
from matplotlib.colors import ListedColormap
x_set, y_set = x_train, y_train
x1, x2 = nm.meshgrid(nm.arange(start = x_set[:, 0].min() - 1, stop = x_set[:, 0].max() + 1, step =0.01),nm.arange(start = x_set[:, 1].min() - 1, stop = x_set[:, 1].max() + 1, step = 0.01))
mtp.contourf(x1, x2, classifier.predict(nm.array([x1.ravel(), x2.ravel()]).T).reshape(x1.shape),
alpha = 0.75, cmap = ListedColormap(('red','green' )))
mtp.xlim(x1.min(), x1.max())
mtp.ylim(x2.min(), x2.max())
for i, j in enumerate(nm.unique(y_set)):
mtp.scatter(x_set[y_set == j, 0], x_set[y_set == j, 1],
c = ListedColormap(('red', 'green'))(i), label = j)
mtp.title('K-NN Algorithm (Training set)')
mtp.xlabel('Age')
mtp.ylabel('Estimated Salary')
mtp.legend()
mtp.show()


#Visualizing the test set result
from matplotlib.colors import ListedColormap
x_set, y_set = x_test, y_test
x1, x2 = nm.meshgrid(nm.arange(start = x_set[:, 0].min() - 1, stop = x_set[:, 0].max() + 1, step =0.01), nm.arange(start = x_set[:, 1].min() - 1, stop = x_set[:, 1].max() + 1, step = 0.01))
mtp.contourf(x1, x2, classifier.predict(nm.array([x1.ravel(), x2.ravel()]).T).reshape(x1.shape), alpha = 0.75, cmap = ListedColormap(('red','green' )))
mtp.xlim(x1.min(), x1.max())
mtp.ylim(x2.min(), x2.max())
for i, j in enumerate(nm.unique(y_set)):
mtp.scatter(x_set[y_set == j, 0], x_set[y_set == j, 1],
c = ListedColormap(('red', 'green'))(i), label = j)
mtp.title('K-NN algorithm(Test set)')
mtp.xlabel('Age')
mtp.ylabel('Estimated Salary')
mtp.legend()
mtp.show()
from sklearn.metrics import accuracy_score
print ("Accuracy : ", accuracy_score(y_test, y_pred))