Skip to content
Open
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 9 additions & 3 deletions tableone.py
Original file line number Diff line number Diff line change
Expand Up @@ -84,8 +84,10 @@ def __init__(self, data, columns=None, categorical=None, groupby=None,
nonnormal = [nonnormal]

# if columns not specified, use all columns
if not columns:
if type(columns) == type(None):
columns = data.columns.get_values()
elif 'pandas.core.indexes' in str(type(columns)):
columns = columns.get_values()

# check that the columns exist in the dataframe
if not set(columns).issubset(data.columns):
Expand All @@ -98,7 +100,11 @@ def __init__(self, data, columns=None, categorical=None, groupby=None,
raise InputError('Input contains duplicate columns: {}'.format(dups))

# if categorical not specified, try to identify categorical
if not categorical and type(categorical) != list:
if type(columns) == type(None):
categorical = self._detect_categorical_columns(data[columns])
elif 'pandas.core.indexes' in str(type(categorical)):
categorical = categorical.get_values()
elif type(categorical) != list:
Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

If someone specifies a single categorical variable as a string (e.g. categorical = 'ICU'), then I think we now ignore their selection and generate the list ourselves. Might be good to catch the string too?

categorical = self._detect_categorical_columns(data[columns])

if pval and not groupby:
Expand Down Expand Up @@ -267,7 +273,7 @@ def _normaltest(self,x):
Compute test for normal distribution.

Null hypothesis: x comes from a normal distribution
p < alpha suggests the null hypothesis can be rejected.
p < alpha suggests the null hypothesis can be rejected.
"""
stat,p = stats.normaltest(x.values, nan_policy='omit')
return p
Expand Down