Skip to content

tifat58/dr-joint-learning

Repository files navigation

dr-joint-learning

Official Repository for DRG-Net

Tusfiqur, Hasan Md, Duy MH Nguyen, Mai TN Truong, Triet A. Nguyen, Binh T. Nguyen, Michael Barz, Hans-Juergen Profitlich et al. "DRG-Net: interactive joint learning of multi-lesion segmentation and classification for diabetic retinopathy grading." arXiv preprint arXiv:2212.14615 (2022). https://arxiv.org/abs/2212.14615

  • Contains the training sciprts for classification and segmentation models for FGADR and EyPACS datasets
  • Scripts for Additional models and other datasets will be added soon.

Installation

Recommended environment:

  • python 3.8+
  • pytorch 1.7.1+
  • torchvision 0.8.2+
  • tqdm
  • munch
  • packaging
  • tensorboard
  • scikit-learn
  • opencv-python
  • pillow < 7
  • segmentation-models-pytorch

To install the dependencies create a virtualenv and run:

$ pip install -r requirements.txt

Datasets

Datasets used in this paper can be accessed from the following links:

For classification

  • 'dr_classification' folder contains scripts for dr grading classification task.
  • Follow readme.md inside 'dr_classification' for instructions.

For segmentation

  • 'dr_segmentation' folder contains scripts for dr segmentation task.
  • Follow readme.md inside 'dr_segmentaion' instructions

Citation

If you use this code or results in your research, please cite:

@article{tusfiqur2022drg,
  title={DRG-Net: interactive joint learning of multi-lesion segmentation and classification for diabetic retinopathy grading},
  author={Tusfiqur, Hasan Md and Nguyen, Duy MH and Truong, Mai TN and Nguyen, Triet A and Nguyen, Binh T and Barz, Michael and Profitlich, Hans-Juergen and Than, Ngoc TT and Le, Ngan and Xie, Pengtao and others},
  journal={arXiv preprint arXiv:2212.14615},
  year={2022}
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages