Official Repository for DRG-Net
Tusfiqur, Hasan Md, Duy MH Nguyen, Mai TN Truong, Triet A. Nguyen, Binh T. Nguyen, Michael Barz, Hans-Juergen Profitlich et al. "DRG-Net: interactive joint learning of multi-lesion segmentation and classification for diabetic retinopathy grading." arXiv preprint arXiv:2212.14615 (2022). https://arxiv.org/abs/2212.14615
- Contains the training sciprts for classification and segmentation models for FGADR and EyPACS datasets
- Scripts for Additional models and other datasets will be added soon.
Recommended environment:
- python 3.8+
- pytorch 1.7.1+
- torchvision 0.8.2+
- tqdm
- munch
- packaging
- tensorboard
- scikit-learn
- opencv-python
- pillow < 7
- segmentation-models-pytorch
To install the dependencies create a virtualenv and run:
$ pip install -r requirements.txtDatasets
Datasets used in this paper can be accessed from the following links:
- Indian Diabetic Retinopathy Image Dataset (IDRiD) https://ieee-dataport.org/open-access/indian-diabetic-retinopathy-image-dataset-idrid
- FGADR Dataset - Look Deeper into Eyes. https://csyizhou.github.io/FGADR/
- EyePACS Dataset - https://paperswithcode.com/dataset/kaggle-eyepacs
For classification
- 'dr_classification' folder contains scripts for dr grading classification task.
- Follow readme.md inside 'dr_classification' for instructions.
For segmentation
- 'dr_segmentation' folder contains scripts for dr segmentation task.
- Follow readme.md inside 'dr_segmentaion' instructions
If you use this code or results in your research, please cite:
@article{tusfiqur2022drg,
title={DRG-Net: interactive joint learning of multi-lesion segmentation and classification for diabetic retinopathy grading},
author={Tusfiqur, Hasan Md and Nguyen, Duy MH and Truong, Mai TN and Nguyen, Triet A and Nguyen, Binh T and Barz, Michael and Profitlich, Hans-Juergen and Than, Ngoc TT and Le, Ngan and Xie, Pengtao and others},
journal={arXiv preprint arXiv:2212.14615},
year={2022}
}