Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
48 changes: 48 additions & 0 deletions src/cnn.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms


class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(1, 32, kernel_size=5)
self.conv2 = nn.Conv2d(32, 64, kernel_size=5)
self.pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(64 * 4 * 4, 128)
self.fc2 = nn.Linear(128, 10)

def forward(self, x):
x = self.pool(nn.functional.relu(self.conv1(x)))
x = self.pool(nn.functional.relu(self.conv2(x)))
x = x.view(-1, 64 * 4 * 4)
x = nn.functional.relu(self.fc1(x))
x = self.fc2(x)
return nn.functional.log_softmax(x, dim=1)

def train_cnn(self, trainloader, epochs=3):
optimizer = optim.SGD(self.parameters(), lr=0.01)
criterion = nn.NLLLoss()

for epoch in range(epochs):
for images, labels in trainloader:
optimizer.zero_grad()
output = self(images)
loss = criterion(output, labels)
loss.backward()
optimizer.step()

torch.save(self.state_dict(), "mnist_cnn_model.pth")


transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]
)

trainset = datasets.MNIST(".", download=True, train=True, transform=transform)
trainloader = DataLoader(trainset, batch_size=64, shuffle=True)

cnn = CNN()
cnn.train_cnn(trainloader)