Skip to content

stephantul/skeletoken

Repository files navigation

A skeleton smoking a cigarette.

Skeletoken

This package contains Pydantic datamodels that fully describe the tokenizer.json file used in transformers via Tokenizers. This is useful, because working with this format is complicated.

Rationale

The Hugging Face tokenizers representation does not reliably allow you to edit tokenizers as a structured object. This means that complex changes to tokenizers require you to edit the tokenizer.json file manually. This is annoying, because the format of this file is complicated.

Furthermore, tokenizers does not give reasonable errors when parsing a tokenizer fails. It does give line/character numbers, but those point to the last character of the section where the parsing fails. For example, inserting an illegal vocabulary item just tells you that there is an issue in the vocabulary somewhere by pointing out the last character of the vocabulary as the place where the error occurs.

This package contains datamodels (pydantic Basemodels) that contain the same constraints as the tokenizers package. In other words, if you can create a model in this package, the tokenizers package can parse it. This allows you to progressively edit tokenizer json files, all the while getting productive error messages.

Installation

Install it via pip

pip install skeletoken

Example

from skeletoken import TokenizerModel

# Directly pull a tokenizer from the hub
tokenizer_model = TokenizerModel.from_pretrained("gpt2")

print(tokenizer_model.model.type)
# ModelType.BPE
print(tokenizer_model.pre_tokenizer.type)
# PreTokenizerType.BYTELEVEL

Now let's add a digit splitter to the tokenizer.

from skeletoken import TokenizerModel
from skeletoken.pretokenizers import DigitsPreTokenizer

model = TokenizerModel.from_pretrained("gpt2")
tok = model.to_tokenizer()

# Create the digits pretokenizer
digits = DigitsPreTokenizer(individual_digits=True)
model = model.add_pre_tokenizer(digits)

new_tok = model.to_tokenizer()
print(tok.encode("hello 123").tokens)
# ['hello', 'Ġ123']
print(new_tok.encode("hello 123").tokens)
# ['hello', 'Ġ', '1', '2', '3']

Decasing a tokenizer

For background, see this blogpost. Decasing is super easy using skeletoken.

from tokenizers import Tokenizer
from skeletoken import TokenizerModel

model_name = "intfloat/multilingual-e5-small"

tokenizer = Tokenizer.from_pretrained(model_name)

print([tokenizer.encode(x).tokens for x in ["Amsterdam", "amsterdam"]])
# [['<s>', '▁Amsterdam', '</s>'], ['<s>', '▁am', 'ster', 'dam', '</s>']]

model = TokenizerModel.from_pretrained(model_name)
model = model.decase_vocabulary()

lower_tokenizer = model.to_tokenizer()
print([lower_tokenizer.encode(x).tokens for x in ["Amsterdam", "amsterdam"]])
# [['<s>', '▁amsterdam', '</s>'], ['<s>', '▁amsterdam', '</s>']]

Making a tokenizer greedy

For background, see this blog post. Like decasing, turning any tokenizer into a greedy one is super easy using skeletoken.

from tokenizers import Tokenizer
from skeletoken import TokenizerModel

model_name = "gpt2"

tokenizer = Tokenizer.from_pretrained(model_name)

print([tokenizer.encode(x).tokens for x in [" hellooo", " bluetooth"]])
# [['Ġhell', 'ooo'], ['Ġblu', 'etooth']]

model = TokenizerModel.from_pretrained(model_name)
model.make_model_greedy()
greedy_tokenizer = model.to_tokenizer()
print([greedy_tokenizer.encode(x).tokens for x in [" hellooo", " bluetooth"]])
# [['Ġhello', 'oo'], ['Ġblue', 'too', 'th']]

Roadmap

Here's a rough roadmap:

  • ✅ Add automated lowercasing (see blog)
  • ✅ Add vocabulary changes + checks (e.g., check the merge table if a token is added)
  • ✅ Add helper functions for adding modules
  • ✅ Add secondary constraints (e.g., if an AddedToken refers to a vocabulary item does not exist, we should crash.)
  • ✅ Add a front end for the Hugging Face trainer
  • ✅ Add automatic model editing

License

MIT

Author

Stéphan Tulkens

About

Datamodels for hugging face tokenizers

Resources

License

Stars

Watchers

Forks

Packages

No packages published