- π Resume Scoring - ML-powered analysis with TF-IDF + XGBoost
- π€ AI Suggestions - Gemini-generated improvement tips
- π PDF Upload - Easy drag-and-drop interface
- π± Responsive Design - Works on all devices
- β‘ Fast Results - Get insights in seconds
- Frontend: HTML, CSS, Tailwind, JavaScript
- Backend: FastAPI(Python)
- ML: scikit-learn, TF-IDF, XGBoost
- AI: Google Gemini API
- Deployment: Vercel+Render
git clone https://github.com/yourusername/resume-analyzer.git
cd resume-analyzercd backend
python -m venv venv
source venv/bin/activate # Windows: venv\Scripts\activate
pip install -r requirements.txt# Create .env file
OPENAI_API_KEY=your_openai_api_key_hereuvicorn main:app --reloadcd frontend
python -m http.server 8080
# OR open index.html in browserVisit http://localhost:8080 to start analyzing resumes!
Resume-Analyzer/
β
βββ Backend/ # Backend (API + ML Model)
β βββ Backend.py # Main backend application (Flask/FastAPI)
β βββ Final.ipynb # Model training & experiments notebook
β βββ final_model.joblib # Trained ML model (XGBoost / Classifier)
β βββ final_vectorizer.joblib # TF-IDF vectorizer
β βββ requirements.txt # Backend dependencies
β βββ __pycache__/ # Compiled python cache (ignored)
β
βββ Frontend/ # Frontend (React + Vite + Tailwind)
β βββ index.html # Entry point
β βββ package.json # Node dependencies
β βββ vite.config.ts # Vite config
β βββ tailwind.config.js # Tailwind config
β βββ src/ # React source files
β β βββ app.jsx # Main app logic
β β βββ main.jsx # React DOM render
β β βββ App.css # App styles
β β βββ index.css # Global styles
β β βββ assets/ # Static assets (icons, images)
β βββ public/ # Public static files
β
βββ Data/ # Dataset & Model JSON
β βββ resume_job_matching_dataset.csv
β βββ resume_model.json
β
βββ Screenshots/ # App demo screenshots
β βββ upload_resume.png
β βββ score_result.png
β βββ suggestions.png
β βββ mobile_view.png
β
βββ README.md # Project documentation
βββ .gitignore # Git ignore rules
- Upload your resume (PDF format)
- Click "Analyze Resume" button
- Get your score (0-100) and AI suggestions
- Improve your resume based on feedback
| Step 1: Upload | Step 2: Analysis | Step 3: Suggestions | Step 4: Results |
|---|---|---|---|
![]() |
![]() |
![]() |
![]() |
| Easy drag & drop | ML-powered scoring | AI recommendations | Track improvements |
| π» Desktop View | π± Mobile Responsive |
|---|---|
![]() |
Perfect for all screen sizes! |
- Fork the repo
- Create feature branch (
git checkout -b feature/new-feature) - Commit changes (
git commit -am 'Add new feature') - Push to branch (
git push origin feature/new-feature) - Create Pull Request
- FastAPI for web framework
- scikit-learn for machine learning
- pandas and numpy for data processing
- XGBoost for advanced ML models
- Gemini for AI suggestions
- PyPDF2 for PDF processing
- python-dotenv for environment variables
MIT License - feel free to use this project for learning and development!
β Star this repo if it helped you!
Made with β€οΈ by Sonal Singh



