Releases: snowflakedb/snowflake-ml-python
1.8.6
1.8.5
1.8.5
Bug Fixes
- Registry: Fixed a bug when listing and deleting container services.
- Registry: Fixed explainability issue with scikit-learn pipelines, skipping explain function creation.
- Explainability: bump minimum streamlit version down to 1.30
1.8.4
1.8.4
Bug Fixes
- Registry: Default
enable_explainability
to True when the model can be deployed to Warehouse. - Registry: Add
custom_model.partitioned_api
decorator and deprecatepartitioned_inference_api
. - Registry: Fixed a bug when logging pytroch and tensorflow models that caused
UnboundLocalError: local variable 'multiple_inputs' referenced before assignment
.
Breaking change
- ML Job: Updated property
id
to be fully qualified name; Introduced new propertyname
to represent the ML Job name - ML Job: Modified
list_jobs()
to return ML Jobname
instead ofid
- Registry: Error in
log_model
ifenable_explainability
is True and model is only deployed to
Snowpark Container Services, instead of just user warning.
New Features
- ML Job: Extend
@remote
function decorator,submit_file()
andsubmit_directory()
to acceptdatabase
and
schema
parameters - ML Job: Support querying by fully qualified name in
get_job()
- Explainability: Added visualization functions to
snowflake.ml.monitoring
to plot explanations in notebooks. - Explainability: Support explain for categorical transforms for sklearn pipeline
- Support categorical type for
xgboost.DMatrix
inputs.
1.8.3
1.8.3
Bug Fixes
Behavior Change
New Features
- Registry: Default to the runtime cuda version if available when logging a GPU model in Container Runtime.
- ML Job: Added
as_list
argument toMLJob.get_logs()
to enable retrieving logs
as a list of strings - Registry: Support
ModelVersion.run_job
to run inference with a single-node Snowpark Container Services job. - DataConnector: Removed PrPr decorators
1.8.2
1.8.2
Bug Fixes
Behavior Change
New Features
- ML Job now available as a PuPr feature
- ML Job: Add ability to retrieve results for
@remote
decorated functions using
newMLJobWithResult.result()
API, which will return the unpickled result
or raise an exception if the job execution failed. - ML Job: Pre-created Snowpark Session is now available inside job payloads using
snowflake.snowpark.context.get_active_session()
- Registry: Introducing
save_location
tolog_model
using theoptions
argument.
User's can provide the path to write the model version's files that get stored in Snowflake's stage. - Registry: Include model dependencies in pip requirements by default when logging in Container Runtime.
reg.log_model(
model=...,
model_name=...,
version_name=...,
...,
options={"save_location": "./model_directory"},
)
- ML Job (PrPr): Add
instance_id
argument toget_logs
andshow_logs
method to support multi node log retrieval - ML Job (PrPr): Add
job.get_instance_status(instance_id=...)
API to support multi node status retrieval
1.8.1
1.8.1
Bug Fixes
- Registry: Fix a bug that caused
unsupported model type
error while logging a sklearn model withscore_samples
inference method. - Registry: Fix a bug that model inference service creation fails on an existing and suspended service.
Behavior Change
New Features
- ML Job (PrPr): Update Container Runtime image version to
1.0.1
- ML Job (PrPr): Add
enable_metrics
argument to job submission APIs to enable publishing service metrics to Event Table.
See Accessing Event Table service metrics
for retrieving published metrics
and Costs of telemetry data collection
for cost implications. - Registry: When creating a copy of a
ModelVersion
withlog_model
, raise an exception if unsupported arguments are provided.
1.8.0
1.8.0
Bug Fixes
- Modeling: Fix a bug in some metrics that allowed an unsupported version of numpy to be installed
automatically in the stored procedure, resulting in a numpy error on execution - Registry: Fix a bug that leads to incorrect
Model is does not have _is_inference_api
error message when assigning
a supported model as a property of a CustomModel. - Registry: Fix a bug that inference is not working when models with more than 500 input features
are deployed to SPCS.
Behavior Change
-
Registry: With FeatureGroupSpec support, auto inferred model signature for
transformers.Pipeline
models have been
updated, including:-
Signature for fill-mask task has been changed from
ModelSignature( inputs=[ FeatureSpec(name="inputs", dtype=DataType.STRING), ], outputs=[ FeatureSpec(name="outputs", dtype=DataType.STRING), ], )
to
ModelSignature( inputs=[ FeatureSpec(name="inputs", dtype=DataType.STRING), ], outputs=[ FeatureGroupSpec( name="outputs", specs=[ FeatureSpec(name="sequence", dtype=DataType.STRING), FeatureSpec(name="score", dtype=DataType.DOUBLE), FeatureSpec(name="token", dtype=DataType.INT64), FeatureSpec(name="token_str", dtype=DataType.STRING), ], shape=(-1,), ), ], )
-
Signature for token-classification task has been changed from
ModelSignature( inputs=[ FeatureSpec(name="inputs", dtype=DataType.STRING), ], outputs=[ FeatureSpec(name="outputs", dtype=DataType.STRING), ], )
to
ModelSignature( inputs=[FeatureSpec(name="inputs", dtype=DataType.STRING)], outputs=[ FeatureGroupSpec( name="outputs", specs=[ FeatureSpec(name="word", dtype=DataType.STRING), FeatureSpec(name="score", dtype=DataType.DOUBLE), FeatureSpec(name="entity", dtype=DataType.STRING), FeatureSpec(name="index", dtype=DataType.INT64), FeatureSpec(name="start", dtype=DataType.INT64), FeatureSpec(name="end", dtype=DataType.INT64), ], shape=(-1,), ), ], )
-
Signature for question-answering task when top_k is larger than 1 has been changed from
ModelSignature( inputs=[ FeatureSpec(name="question", dtype=DataType.STRING), FeatureSpec(name="context", dtype=DataType.STRING), ], outputs=[ FeatureSpec(name="outputs", dtype=DataType.STRING), ], )
to
ModelSignature( inputs=[ FeatureSpec(name="question", dtype=DataType.STRING), FeatureSpec(name="context", dtype=DataType.STRING), ], outputs=[ FeatureGroupSpec( name="answers", specs=[ FeatureSpec(name="score", dtype=DataType.DOUBLE), FeatureSpec(name="start", dtype=DataType.INT64), FeatureSpec(name="end", dtype=DataType.INT64), FeatureSpec(name="answer", dtype=DataType.STRING), ], shape=(-1,), ), ], )
-
Signature for text-classification task when top_k is
None
has been changed fromModelSignature( inputs=[ FeatureSpec(name="text", dtype=DataType.STRING), FeatureSpec(name="text_pair", dtype=DataType.STRING), ], outputs=[ FeatureSpec(name="label", dtype=DataType.STRING), FeatureSpec(name="score", dtype=DataType.DOUBLE), ], )
to
ModelSignature( inputs=[ FeatureSpec(name="text", dtype=DataType.STRING), ], outputs=[ FeatureSpec(name="label", dtype=DataType.STRING), FeatureSpec(name="score", dtype=DataType.DOUBLE), ], )
-
Signature for text-classification task when top_k is not
None
has been changed fromModelSignature( inputs=[ FeatureSpec(name="text", dtype=DataType.STRING), FeatureSpec(name="text_pair", dtype=DataType.STRING), ], outputs=[ FeatureSpec(name="outputs", dtype=DataType.STRING), ], )
to
ModelSignature( inputs=[ FeatureSpec(name="text", dtype=DataType.STRING), ], outputs=[ FeatureGroupSpec( name="labels", specs=[ FeatureSpec(name="label", dtype=DataType.STRING), FeatureSpec(name="score", dtype=DataType.DOUBLE), ], shape=(-1,), ), ], )
-
Signature for text-generation task has been changed from
ModelSignature( inputs=[FeatureSpec(name="inputs", dtype=DataType.STRING)], outputs=[ FeatureSpec(name="outputs", dtype=DataType.STRING), ], )
to
ModelSignature( inputs=[ FeatureGroupSpec( name="inputs", specs=[ FeatureSpec(name="role", dtype=DataType.STRING), FeatureSpec(name="content", dtype=DataType.STRING), ], shape=(-1,), ), ], outputs=[ FeatureGroupSpec( name="outputs", specs=[ FeatureSpec(name="generated_text", dtype=DataType.STRING), ], shape=(-1,), ) ], )
-
-
Registry: PyTorch and TensorFlow models now expect a single tensor input/output by default when logging to Model
Registry. To use multiple tensors (previous behavior), setoptions={"multiple_inputs": True}
.Example with single tensor input:
import torch class TorchModel(torch.nn.Module): def __init__(self, n_input: int, n_hidden: int, n_out: int, dtype: torch.dtype = torch.float32) -> None: super().__init__() self.model = torch.nn.Sequential( torch.nn.Linear(n_input, n_hidden, dtype=dtype), torch.nn.ReLU(), torch.nn.Linear(n_hidden, n_out, dtype=dtype), torch.nn.Sigmoid(), ) def forward(self, tensor: torch.Tensor) -> torch.Tensor: return cast(torch.Tensor, self.model(tensor)) # Sample usage: data_x = torch.rand(size=(batch_size, n_input)) # Log model with single tensor reg.log_model( model=model, ..., sample_input_data=data_x ) # Run inference with single tensor mv.run(data_x)
For multiple tensor inputs/outputs, use:
reg.log_model( model=model, ..., sample_input_data=[data_x_1, data_x_2], options={"multiple_inputs": True} )
-
Registry: Default
enable_explainability
to False when the model can be deployed to Snowpark Container Services.
New Features
- Registry: Added support to single
torch.Tensor
,tensorflow.Tensor
andtensorflow.Variable
as input or output
data. - Registry: Support
xgboost.DMatrix
datatype for XGBoost models.
1.7.5
1.7.5
- Support Python 3.12.
- Explainability: Support native and snowml sklearn pipeline
Bug Fixes
- Registry: Fixed a compatibility issue when using
snowflake-ml-python
1.7.0 or greater to save atensorflow.keras
model withkeras
2.x, ifrelax_version
is set or default to True, and newer version ofsnowflake-ml-python
is available in Snowflake Anaconda Channel, model could not be run in Snowflake. If you have such model, you could
use the latest version ofsnowflake-ml-python
and callModelVersion.load
to load it back, and re-log it.
Alternatively, you can prevent this issue by settingrelax_version=False
when saving the model. - Registry: Removed the validation that disallows data that does not have non-null values being passed to
ModelVersion.run
. - ML Job (PrPr): No longer require CREATE STAGE privilege if
stage_name
points to an existing stage - ML Job (PrPr): Fixed a bug causing some payload source and entrypoint path
combinations to be erroneously rejected with
ValueError(f"{self.entrypoint} must be a subpath of {self.source}")
- ML Job (PrPr): Fixed a bug in Ray cluster startup config which caused certain Runtime APIs to fail
Behavior Change
New Features
- Registry: Added support for handling Hugging Face model configurations with auto-mapping functionality.
- Registry: Added support for
keras
3.x model withtensorflow
andpytorch
backend - ML Job (PrPr): Support any serializable (pickleable) argument for
@remote
decorated functions
1.7.4
1.7.4
- FileSet: The
snowflake.ml.fileset.FileSet
has been deprecated and will be removed in a future version.
Use snowflake.ml.dataset.Dataset and
snowflake.ml.data.DataConnector
instead.
Bug Fixes
- Registry: Fixed an issue that the hugging face pipeline is loaded using incorrect dtype.
- Registry: Fixed an issue that only 1 row is used when infer the model signature in the modeling model.
Behavior Changes
- Registry:
ModelVersion.run
on a service would require redeploying the service once account opts into nested function.
New Features
- Add new
snowflake.ml.jobs
preview API for running headless workloads on SPCS using
Container Runtime for ML - Added
guardrails
option to Cortexcomplete
function, enabling
Cortex Guard support
1.7.3
1.7.3
- Added lowercase versions of Cortex functions, added deprecation warning to Capitalized versions.
- Bumped the requirements of
fsspec
ands3fs
to>=2024.6.1,<2026
- Bumped the requirement of
mlflow
to>=2.16.0, <3
- Registry: Support 500+ features for model registry
Bug Fixes
- Registry: Fixed a bug when providing non-range index pandas DataFrame as the input to a
ModelVersion.run
. - Registry: Improved random model version name generation to prevent collisions.
- Registry: Fix an issue when inferring signature or running inference with Snowpark data that has a column whose type
isARRAY
and containsNULL
value. - Registry:
ModelVersion.run
now accepts fully qualified service name. - Monitoring: Fix issue in SDK with creating monitors using fully qualified names.
- Registry: Fix error in log_model for any sklearn models with only data pre-processing including pre-processing only
pipeline models due to default explainability enablement.
Behavior Changes
New Features
- Added
user_files
argument toRegistry.log_model
for including images or any extra file with the model. - Registry: Added support for handling Hugging Face model configurations with auto-mapping functionality
- DataConnector: Add new
DataConnector.from_sql()
constructor