Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
29 changes: 29 additions & 0 deletions tools/llm/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@ This directory provides utilities and scripts for compiling, optimizing, and ben

- **Model Support:** Works with popular LLMs such as Llama-3, Qwen2.5, etc.
- **Precision Modes:** Supports FP16, BF16, and FP32.
- **Quantization:** Supports FP8 and NVFP4 quantization formats for reduced memory usage and improved inference speed.
- **KV Cache:** Supports static and dynamic KV cache for efficient autoregressive decoding.
- **Benchmarking:** Measures and compares throughput and latency for PyTorch and TensorRT backends.
- **Custom Attention:** Registers and converts custom scaled dot-product attention (SDPA) for compatibility with TensorRT.
Expand Down Expand Up @@ -39,11 +40,39 @@ python run_llm.py --model meta-llama/Llama-3.2-1B-Instruct --prompt "What is par
- `--tokenizer`: (Optional) Tokenizer name; defaults to model.
- `--prompt`: Input prompt for generation.
- `--precision`: Precision mode (`FP16`, `FP32`).
- `--qformat`: Quantization format (`fp8`, `nvfp4`) to apply.
- `--pre_quantized`: Flag to use pre-quantized models from HuggingFace.
- `--num_tokens`: Number of output tokens to generate.
- `--cache`: KV cache type (`static_v1`, `static_v2`, or empty for no KV caching).
- `--benchmark`: Enable benchmarking mode.
- `--enable_pytorch_run`: Also run and compare PyTorch baseline.

### Quantization

Torch-TensorRT supports quantization to reduce model memory footprint and improve inference performance:

#### Using Pre-quantized Models

To use pre-quantized models from HuggingFace:

```bash
python run_llm.py --model nvidia/Llama-3.1-8B-Instruct-FP8 --pre_quantized --prompt "What is parallel programming?" --precision FP16 --num_tokens 128
```

#### Applying quantization by ModelOpt

Apply fp8 quantization from HuggingFace:

```bash
python run_llm.py --model meta-llama/Llama-3.1-8B --qformat fp8 --prompt "What is parallel programming?" --precision FP16 --num_tokens 128
```

#### Quantization Requirements

- **ModelOpt Library**: Required for quantization operations
- **FP8**: Supported on Hopper and Blackwell-generation GPUs.
- **NVFP4**: Supported on Blackwell-generation GPUs.

### Caching Strategies

- **Static Cache v1/v2:** Adds static KV cache tensors as model inputs/outputs for efficient reuse.
Expand Down
267 changes: 267 additions & 0 deletions tools/llm/quantize_utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,267 @@
import json
import logging
import os

import huggingface_hub
import torch
from huggingface_hub import snapshot_download

logger = logging.getLogger(__name__)

try:
import modelopt.torch.quantization as mtq # noqa: F401f

assert torch.ops.tensorrt.quantize_op.default
except Exception:
logger.warning("Unable to import quantization op. Please install modelopt library")

from modelopt.core.torch.quantization.qtensor.nvfp4_tensor import NVFP4QTensor
from modelopt.torch.quantization.config import QuantizerAttributeConfig
from modelopt.torch.quantization.nn.modules.tensor_quantizer import TensorQuantizer
from modelopt.torch.utils.dataset_utils import (
create_forward_loop,
get_dataset_dataloader,
)
from safetensors import safe_open


def quantize_model(model, args, tokenizer):
"""
Quantize a PyTorch model using ModelOpt quantization.

This function performs post-training quantization (PTQ) on the model using
calibration data from the provided tokenizer. It supports both FP8 and NVFP4
quantization formats.

Args:
model: PyTorch model to quantize
args: Arguments containing quantization format and debug settings
tokenizer: Tokenizer for creating calibration dataloader

Returns:
Quantized model with reduced precision weights and activations

Raises:
RuntimeError: If unsupported quantization format is specified
"""
# Create calibration dataloader for quantization
calib_dataloader = get_dataset_dataloader(
tokenizer=tokenizer,
batch_size=32,
num_samples=512,
device="cuda:0",
)
if args.qformat == "fp8":
quant_cfg = mtq.FP8_DEFAULT_CFG
elif args.qformat == "nvfp4":
quant_cfg = mtq.NVFP4_DEFAULT_CFG
else:
raise RuntimeError("Unsupported quantization format")
calibrate_loop = create_forward_loop(dataloader=calib_dataloader)

model = mtq.quantize(model, quant_cfg, forward_loop=calibrate_loop)
if args.debug:
mtq.print_quant_summary(model)

return model


class TensorRTQuantizedLinear(torch.nn.Module):
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@peri044 Is this something we might want to upstream to ModelOpt in the future?

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Or pull into main torch-tensorrt as a pass?

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I guess its somewhat HF specific, so remaining in this tool would make sense but are there some parts we could make generic for any sort of quantization workflow (e.g. torchao)?

"""
TensorRT quantized linear layer that applies quantization to both input and weight tensors.
"""

def __init__(
self, original_linear: torch.nn.Linear, input_amax, weight_amax, quant_cfg
):
"""
Initialize quantized linear layer.

Args:
original_linear: Original PyTorch linear layer to quantize
input_amax: Maximum absolute value for input quantization scaling
weight_amax: Maximum absolute value for weight quantization scaling
quant_cfg: Quantization configuration for TensorQuantizer
"""
super().__init__()

# Store reference to original linear layer for weight access
self.original_linear = original_linear

# Copy bias from original layer if it exists
if original_linear.bias is not None:
self.bias = torch.nn.Parameter(original_linear.bias.clone()).cuda()
else:
self.bias = None

# Create quantizers for input and weight tensors
self.input_quantizer = TensorQuantizer(
quant_attribute_cfg=quant_cfg, amax=input_amax
)
self.weight_quantizer = TensorQuantizer(
quant_attribute_cfg=quant_cfg, amax=weight_amax
)

def forward(self, input):
input = self.input_quantizer(input)
weight = self.weight_quantizer(self.original_linear.weight)
return torch.nn.functional.linear(input, weight, self.bias)


def convert_linear_to_tensorrt_quantized(model, model_name):
"""
Convert linear layers in a model to TensorRT quantized versions from pre-quantized weights.

This function is specifically designed for Hugging Face quantized models and only
applies quantization to linear operations. It loads pre-quantized models from
Hugging Face format and replaces standard linear layers with TensorRTQuantizedLinear
layers. It supports both FP8 and NVFP4 quantization formats.

The function:
1. Loads quantization scales from Hugging Face model files (SafeTensors)
2. Parses quantization configuration from hf_quant_config.json
3. Replaces standard linear layers with TensorRTQuantizedLinear layers
4. Applies appropriate quantization based on the model's quantization format

Note: This function only quantizes linear operations and is intended for use
with pre-quantized Hugging Face models that have been quantized using ModelOpt.

Args:
model: PyTorch model to quantize
model_name: Path to Hugging Face model directory or model identifier

Returns:
Model with quantized linear layers

Raises:
RuntimeError: If quantization config is not found or unsupported format
"""
# Determine if model_name is a local directory or needs to be downloaded
if os.path.isdir(model_name):
hf_folder = model_name
else:
# Download model from Hugging Face Hub
hf_folder = snapshot_download(
model_name,
local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE,
ignore_patterns=["original/**/*"],
revision=None,
)

# Load all tensors from SafeTensors files
tensors = {}
for file in os.listdir(hf_folder):
if file.endswith(".safetensors"):
with safe_open(
os.path.join(hf_folder, file), framework="pt", device="cpu"
) as f:
tensor_names = f.keys()
for name in tensor_names:
tensors[name] = f.get_tensor(name)

# Load and parse quantization configuration
hf_quant_config_path = f"{hf_folder}/hf_quant_config.json"
if os.path.exists(hf_quant_config_path):
with open(hf_quant_config_path, "r") as f:
hf_quant_config = json.load(f)
hf_quant_config = hf_quant_config["quantization"]

hf_quant_algo = hf_quant_config.pop("quant_algo", None)
if hf_quant_algo != "FP8" and hf_quant_algo != "NVFP4":
raise RuntimeError("Only FP8 or NVFP4 quantization is supported")
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

How would it be different for MXFP4?

else:
raise RuntimeError("No quantization config found")

# Iterate through all modules in the model
for name, module in model.named_modules():
# Check if the module is a linear layer
target = torch.nn.modules.linear.Linear
if isinstance(module, target):
# Construct names for quantization scale tensors
# These follow the naming convention: module_name.weight_scale and module_name.input_scale
weight_scale_name = name + ".weight_scale"
input_scale_name = name + ".input_scale"

if weight_scale_name not in tensors:
logger.warning(f"Weight scale tensor {weight_scale_name} not found")
continue
if input_scale_name not in tensors:
logger.warning(f"Input scale tensor {input_scale_name} not found")
continue

if hf_quant_algo == "FP8":
# FP8 E4M3 format has a maximum representable value of 448.0
# Scale the quantization parameters accordingly
weight_scale = tensors.pop(weight_scale_name)
weight_amax = weight_scale * 448.0
input_amax = tensors.pop(input_scale_name) * 448.0

# Dequantize the weight using the scale factor
dequantized_weight_data = module.weight.to(torch.float32) * weight_scale

# Configure quantizer for FP8 format (4 exponent bits, 3 mantissa bits)
quantizer_attribute_config = QuantizerAttributeConfig(
num_bits=(4, 3), axis=None
)

elif hf_quant_algo == "NVFP4":
# NVFP4 format requires additional scale tensor and different configuration
weight_name = name + ".weight"
weight_scale2_name = name + ".weight_scale_2"
weight_scale = tensors.pop(weight_scale_name)
input_scale = tensors.pop(input_scale_name)
weight_scale2 = tensors.pop(weight_scale2_name)

# Calculate amax values with additional scaling factor for NVFP4
input_amax = input_scale * 448.0 * 6.0
weight_amax = weight_scale2 * 448.0 * 6.0

# Handle NVFP4 tensor format
weight_data = tensors.pop(weight_name)
original_shape = list(weight_data.shape)
original_shape[-1] *= 2 # NVFP4 packs 2 values per element
nvfp4_tensor = NVFP4QTensor(
torch.Size(original_shape), torch.float32, weight_data
)

# Dequantize using both scales and block size configuration
dequantized_weight_data = nvfp4_tensor.dequantize(
scale=weight_scale, double_scale=weight_scale2, block_sizes={-1: 16}
)

# Configure quantizer for NVFP4 format with dynamic block quantization
quantizer_attribute_config = QuantizerAttributeConfig(
num_bits=(2, 1),
axis=None,
block_sizes={-1: 16, "type": "dynamic", "scale_bits": (4, 3)},
enable=True,
)

# Restore the weight to its original full-precision format so that QDQ nodes
# can be properly inserted and optimized during TensorRT compilation
module.weight.data = dequantized_weight_data

# Create the quantized linear layer with calculated amax values
quantized_module = TensorRTQuantizedLinear(
module, input_amax, weight_amax, quantizer_attribute_config
)

# Replace the original module with the quantized version
# Extract parent module name and child module name
parent_name = ".".join(name.split(".")[:-1])
child_name = name.split(".")[-1]

if parent_name:
# Get the parent module and replace the child
parent_module = model.get_submodule(parent_name)
setattr(parent_module, child_name, quantized_module)
else:
# If no parent, replace at model level
setattr(model, child_name, quantized_module)

# Log any unused tensors for debugging
if len(tensors) > 0:
logger.debug(f"{len(tensors)} tensors not used")
for key in tensors:
logger.debug(f" {key}")
return model
36 changes: 33 additions & 3 deletions tools/llm/run_llm.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@

import argparse
import copy
import json
import os
import timeit
from contextlib import nullcontext
Expand Down Expand Up @@ -54,10 +55,13 @@ def get_model(args):
args.model,
use_cache=False,
attn_implementation="sdpa",
ignore_mismatched_sizes=True,
)
.eval()
.cuda()
)
if args.pre_quantized:
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Is this something we could determine automatically?

model = convert_linear_to_tensorrt_quantized(model, args.model).cuda()

if args.precision == "FP16":
model = model.to(torch.float16)
Expand Down Expand Up @@ -91,7 +95,8 @@ def compile_torchtrt(model, input_ids, args):
for optimized inference
"""
max_seq_len = input_ids.shape[1] + args.num_tokens
ep = export_llm(model, input_ids, max_seq_len=max_seq_len)
with export_torch_mode() if args.qformat or args.pre_quantized else nullcontext():
ep = export_llm(model, input_ids, max_seq_len=max_seq_len)
position_ids = torch.arange(input_ids.shape[1]).unsqueeze(0).to(DEVICE)
# Set precision specific flags
use_fp32_acc = False
Expand Down Expand Up @@ -234,13 +239,36 @@ def measure_perf(trt_model, input_signature, backend_name):
arg_parser.add_argument(
"--benchmark", action="store_true", help="Enable benchmark (default: False)"
)

arg_parser.add_argument(
"--qformat",
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

For the sake of clarity, this should be something like quant-[scheme/format]

help=("Apply quantization format. Options: fp8, nvfp4 (default: None)"),
default=None,
)
arg_parser.add_argument(
"--pre_quantized",
action="store_true",
help="Use pre-quantized hf model weights (default: False)",
)
args = arg_parser.parse_args()

if args.qformat and args.pre_quantized:
print("Error: --qformat and --pre_quantized cannot be used together")
exit()

if args.qformat or args.pre_quantized:
from modelopt.torch.quantization.utils import export_torch_mode
from quantize_utils import (
convert_linear_to_tensorrt_quantized,
quantize_model,
)

with torch.inference_mode():
model = get_model(args)

tokenizer = AutoTokenizer.from_pretrained(args.tokenizer or args.model)

# Set pad token
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# Prepare input for benchmarking or evaluation
if args.benchmark:
input_ids = torch.randint(
Expand All @@ -258,6 +286,8 @@ def measure_perf(trt_model, input_signature, backend_name):
pyt_timings = None
pyt_stats = None

if args.qformat != None:
model = quantize_model(model, args, tokenizer)
if args.enable_pytorch_run:
pyt_gen_tokens = generate(
model, input_ids.clone(), MAX_OUTPUT_SEQ_LENGTH, tokenizer.eos_token_id
Expand Down
Loading