Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
57 changes: 42 additions & 15 deletions toolkit/optimizer.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
import torch

import importlib

def get_optimizer(
params,
Expand Down Expand Up @@ -39,7 +39,7 @@ def get_optimizer(
# let net be the neural network you want to train
# you can choose weight decay value based on your problem, 0 by default
optimizer = Prodigy8bit(params, lr=use_lr, eps=1e-6, **optimizer_params)
elif lower_type.startswith("prodigy"):
elif lower_type == "prodigy":
from prodigyopt import Prodigy

print("Using Prodigy optimizer")
Expand All @@ -60,19 +60,18 @@ def get_optimizer(
from toolkit.optimizers.adam8bit import Adam8bit

optimizer = Adam8bit(params, lr=learning_rate, eps=1e-6, decouple=True, **optimizer_params)
elif lower_type.endswith("8bit"):
elif lower_type == "adam8bit":
import bitsandbytes

if lower_type == "adam8bit":
return bitsandbytes.optim.Adam8bit(params, lr=learning_rate, eps=1e-6, **optimizer_params)
if lower_type == "ademamix8bit":
return bitsandbytes.optim.AdEMAMix8bit(params, lr=learning_rate, eps=1e-6, **optimizer_params)
elif lower_type == "adamw8bit":
return bitsandbytes.optim.AdamW8bit(params, lr=learning_rate, eps=1e-6, **optimizer_params)
elif lower_type == "lion8bit":
return bitsandbytes.optim.Lion8bit(params, lr=learning_rate, **optimizer_params)
else:
raise ValueError(f'Unknown optimizer type {optimizer_type}')
return bitsandbytes.optim.Adam8bit(params, lr=learning_rate, eps=1e-6, **optimizer_params)
elif lower_type == "ademamix8bit":
import bitsandbytes
return bitsandbytes.optim.AdEMAMix8bit(params, lr=learning_rate, eps=1e-6, **optimizer_params)
elif lower_type == "adamw8bit":
import bitsandbytes
return bitsandbytes.optim.AdamW8bit(params, lr=learning_rate, eps=1e-6, **optimizer_params)
elif lower_type == "lion8bit":
import bitsandbytes
return bitsandbytes.optim.Lion8bit(params, lr=learning_rate, **optimizer_params)
elif lower_type == 'adam':
optimizer = torch.optim.Adam(params, lr=float(learning_rate), eps=1e-6, **optimizer_params)
elif lower_type == 'adamw':
Expand All @@ -98,5 +97,33 @@ def get_optimizer(
from toolkit.optimizers.automagic import Automagic
optimizer = Automagic(params, lr=float(learning_rate), **optimizer_params)
else:
raise ValueError(f'Unknown optimizer type {optimizer_type}')
# Try to dynamically import a user-defined optimizer
try:
# Split the string into module path and class name
parts = optimizer_type.split(".")
if len(parts) < 2:
raise ValueError(f"Unknown optimizer type {optimizer_type}")

module_path = ".".join(parts[:-1])
class_name = parts[-1]

# Import module dynamically
mod = importlib.import_module(module_path)

# Get optimizer class from module
opt_class = getattr(mod, class_name)

# Instantiate optimizer
try:
optimizer = opt_class(params, lr=float(learning_rate), **optimizer_params)
except TypeError:
# In case the optimizer does not take lr or eps the same way
optimizer = opt_class(params, **optimizer_params)

print(f"Using user-defined optimizer: {optimizer_type}")
return optimizer

except Exception as e:
raise ValueError(f'Unknown optimizer type. Make sure your optimizer is installed in the virtual environment (venv). {optimizer_type}. '
f'Failed to import dynamically. Error: {e}')
return optimizer