Skip to content

[WIP] Support additional output formats for sparse models #3863

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft
wants to merge 1 commit into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -27,10 +27,7 @@
* ML input class which supports a list fo text docs.
* This class can be used for TEXT_EMBEDDING model.
*/
@org.opensearch.ml.common.annotation.MLInput(functionNames = {
FunctionName.TEXT_EMBEDDING,
FunctionName.SPARSE_ENCODING,
FunctionName.SPARSE_TOKENIZE })
@org.opensearch.ml.common.annotation.MLInput(functionNames = { FunctionName.TEXT_EMBEDDING })
public class TextDocsMLInput extends MLInput {
public static final String TEXT_DOCS_FIELD = "text_docs";
public static final String RESULT_FILTER_FIELD = "result_filter";
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,95 @@
/*
* Copyright OpenSearch Contributors
* SPDX-License-Identifier: Apache-2.0
*/

package org.opensearch.ml.common.input.parameter.textembedding;

import static org.opensearch.core.xcontent.XContentParserUtils.ensureExpectedToken;

import java.io.IOException;
import java.util.Locale;

import org.opensearch.core.ParseField;
import org.opensearch.core.common.io.stream.StreamOutput;
import org.opensearch.core.xcontent.NamedXContentRegistry;
import org.opensearch.core.xcontent.XContentBuilder;
import org.opensearch.core.xcontent.XContentParser;
import org.opensearch.ml.common.FunctionName;
import org.opensearch.ml.common.annotation.MLAlgoParameter;
import org.opensearch.ml.common.input.parameter.MLAlgoParams;

import lombok.Builder;

@MLAlgoParameter(algorithms = { FunctionName.SPARSE_ENCODING })
public class SparseEncodingParameters implements MLAlgoParams {

public static final String PARSE_FIELD_NAME = FunctionName.SPARSE_ENCODING.name();
public static final String SPARSE_ENCODING_FORMAT_FIELD = "sparse_encoding_format";

@Override
public int getVersion() {
return 1;
}

@Override
public String getWriteableName() {
return PARSE_FIELD_NAME;
}

@Override
public void writeTo(StreamOutput out) throws IOException {
out.writeOptionalString(sparseEncodingType.name());
}

public static final NamedXContentRegistry.Entry XCONTENT_REGISTRY = new NamedXContentRegistry.Entry(
MLAlgoParams.class,
new ParseField(PARSE_FIELD_NAME),
SparseEncodingParameters::parse
);

@Override
public XContentBuilder toXContent(XContentBuilder xContentBuilder, Params params) throws IOException {
xContentBuilder.startObject();
if (sparseEncodingType != null) {
xContentBuilder.field(SPARSE_ENCODING_FORMAT_FIELD, sparseEncodingType.name());
}
xContentBuilder.endObject();
return xContentBuilder;
}

public enum SparseEncodingFormat {
WORD,
INT
}

// The type of the content to be embedded
private final SparseEncodingFormat sparseEncodingType;

@Builder(toBuilder = true)
public SparseEncodingParameters(SparseEncodingFormat sparseEncodingType) {
this.sparseEncodingType = sparseEncodingType;
}

public SparseEncodingFormat getSparseEncodingType() {
return sparseEncodingType;
}

public static MLAlgoParams parse(XContentParser parser) throws IOException {
SparseEncodingFormat sparseEncodingType = null;

ensureExpectedToken(XContentParser.Token.START_OBJECT, parser.currentToken(), parser);
while (parser.nextToken() != XContentParser.Token.END_OBJECT) {
String fieldName = parser.currentName();
parser.nextToken();

if (fieldName.equals(SPARSE_ENCODING_FORMAT_FIELD)) {
String contentType = parser.text();
sparseEncodingType = SparseEncodingFormat.valueOf(contentType.toUpperCase(Locale.ROOT));
} else {
parser.skipChildren();
}
}
return new SparseEncodingParameters(sparseEncodingType);
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
import org.opensearch.ml.common.input.parameter.MLAlgoParams;
import org.opensearch.ml.common.input.parameter.textembedding.AsymmetricTextEmbeddingParameters;
import org.opensearch.ml.common.input.parameter.textembedding.AsymmetricTextEmbeddingParameters.EmbeddingContentType;
import org.opensearch.ml.common.input.parameter.textembedding.SparseEncodingParameters;
import org.opensearch.ml.common.model.MLModelConfig;
import org.opensearch.ml.common.model.TextEmbeddingModelConfig;
import org.opensearch.ml.common.output.model.ModelResultFilter;
Expand Down Expand Up @@ -40,6 +41,10 @@ public ModelTensorOutput predict(String modelId, MLInput mlInput) throws Transla
for (String doc : textDocsInput.getDocs()) {
Input input = new Input();
input.add(doc);
if (mlParams instanceof SparseEncodingParameters) {
input.add("sparse_encoding_format", ((SparseEncodingParameters) mlParams).getSparseEncodingType().name());
}

output = getPredictor().predict(input);
tensorOutputs.add(parseModelTensorOutput(output, resultFilter));
}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -6,34 +6,48 @@
package org.opensearch.ml.engine.algorithms.sparse_encoding;

import static org.opensearch.ml.common.CommonValue.ML_MAP_RESPONSE_KEY;
import static org.opensearch.ml.common.input.parameter.textembedding.SparseEncodingParameters.SPARSE_ENCODING_FORMAT_FIELD;

import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.Iterator;
import java.util.List;
import java.util.Map;

import org.opensearch.ml.common.input.parameter.textembedding.SparseEncodingParameters;
import org.opensearch.ml.common.output.model.ModelTensor;
import org.opensearch.ml.common.output.model.ModelTensors;
import org.opensearch.ml.engine.algorithms.SentenceTransformerTranslator;

import ai.djl.modality.Input;
import ai.djl.modality.Output;
import ai.djl.ndarray.NDArray;
import ai.djl.ndarray.NDList;
import ai.djl.translate.TranslatorContext;

public class SparseEncodingTranslator extends SentenceTransformerTranslator {

@Override
public NDList processInput(TranslatorContext ctx, Input input) {
String sparse_encoding_format = input.getAsString(SPARSE_ENCODING_FORMAT_FIELD);
if (sparse_encoding_format != null) {
ctx.setAttachment(SPARSE_ENCODING_FORMAT_FIELD, sparse_encoding_format);
}
return super.processInput(ctx, input);
}

@Override
public Output processOutput(TranslatorContext ctx, NDList list) {
Output output = new Output(200, "OK");
Object sparseEncodingFormatObject = ctx.getAttachment(SPARSE_ENCODING_FORMAT_FIELD);
String sparseEncodingFormatString = sparseEncodingFormatObject != null
? sparseEncodingFormatObject.toString()
: SparseEncodingParameters.SparseEncodingFormat.WORD.name();

List<ModelTensor> outputs = new ArrayList<>();
Iterator<NDArray> iterator = list.iterator();
while (iterator.hasNext()) {
NDArray ndArray = iterator.next();
for (NDArray ndArray : list) {
String name = ndArray.getName();
Map<String, Float> tokenWeightsMap = convertOutput(ndArray);
Map<String, Float> tokenWeightsMap = convertOutput(ndArray, sparseEncodingFormatString);
Map<String, ?> wrappedMap = Map.of(ML_MAP_RESPONSE_KEY, Collections.singletonList(tokenWeightsMap));
ModelTensor tensor = ModelTensor.builder().name(name).dataAsMap(wrappedMap).build();
outputs.add(tensor);
Expand All @@ -44,12 +58,14 @@ public Output processOutput(TranslatorContext ctx, NDList list) {
return output;
}

private Map<String, Float> convertOutput(NDArray array) {
private Map<String, Float> convertOutput(NDArray array, String sparseEncodingFormat) {
Map<String, Float> map = new HashMap<>();
NDArray nonZeroIndices = array.nonzero().squeeze();

for (long index : nonZeroIndices.toLongArray()) {
String s = this.tokenizer.decode(new long[] { index }, true);
String s = sparseEncodingFormat.equals(SparseEncodingParameters.SparseEncodingFormat.INT.name())
? Long.toString(index)
: this.tokenizer.decode(new long[] { index }, true);
if (!s.isEmpty()) {
map.put(s, array.getFloat(index));
}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -135,6 +135,7 @@
import org.opensearch.ml.common.input.parameter.regression.LogisticRegressionParams;
import org.opensearch.ml.common.input.parameter.sample.SampleAlgoParams;
import org.opensearch.ml.common.input.parameter.textembedding.AsymmetricTextEmbeddingParameters;
import org.opensearch.ml.common.input.parameter.textembedding.SparseEncodingParameters;
import org.opensearch.ml.common.model.TextEmbeddingModelConfig;
import org.opensearch.ml.common.settings.MLCommonsSettings;
import org.opensearch.ml.common.settings.MLFeatureEnabledSetting;
Expand Down Expand Up @@ -1038,7 +1039,8 @@ public List<NamedXContentRegistry.Entry> getNamedXContent() {
RCFSummarizeParams.XCONTENT_REGISTRY,
LogisticRegressionParams.XCONTENT_REGISTRY,
TextEmbeddingModelConfig.XCONTENT_REGISTRY,
AsymmetricTextEmbeddingParameters.XCONTENT_REGISTRY
AsymmetricTextEmbeddingParameters.XCONTENT_REGISTRY,
SparseEncodingParameters.XCONTENT_REGISTRY
);
}

Expand Down
Loading