Skip to content

Source code and obtained results for "Automatically Proving Mathematical Theorems with Evolutionary Algorithms and Proof Assistants"

License

Notifications You must be signed in to change notification settings

nclab/ea.prover

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ea.prover

Source code and obtained results for "Automatically Proving Mathematical Theorems with Evolutionary Algorithms and Proof Assistants"


Prerequisite

Have Coq installed

Get it from https://coq.inria.fr/

Usage

Get a brief description

python ea.prover.py --help

Conduct the experiments included in paper

python ea.prover.py -i proof/andb_prop.v
python ea.prover.py -i proof/andb_true_elim2.v
python ea.prover.py -i proof/andb_true_intro.v
python ea.prover.py -i proof/ev_minus2.v
python ea.prover.py -i proof/n_1.v
python ea.prover.py -i proof/n_le_k.v
python ea.prover.py -i proof/plus_n_0.v
python ea.prover.py -i proof/silly_prob.v
python ea.prover.py -i proof/solving_by_eapply.v
python ea.prover.py -i proof/SSev_even.v

Results inlucded in paper

  • archive/
    • andb_prop/
    • andb_true_intro/
    • n_1/
    • plus_n_0/
    • solving_by_eapply/
    • andb_true_elim2/
    • ev_minus2/
    • n_le_k/
    • silly_prob/
    • SSev_even/

Use

Please cite

Yang, L.-A., Liu, J.-P., Chen, C.-H., & Chen, Y.-p. (2016). Automatically Proving Mathematical Theorems with Evolutionary Algorithms and Proof Assistants. In Proceedings of 2016 IEEE Congress on Evolutionary Computation (CEC 2016), part of 2016 IEEE World Congress on Computational Intelligence (IEEE WCCI 2016) (pp. 4421–4428). doi: 10.1109/CEC.2016.7744352. (arXiv:1602.07455).

About

Source code and obtained results for "Automatically Proving Mathematical Theorems with Evolutionary Algorithms and Proof Assistants"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •