Skip to content

Conversation

@feihugis
Copy link
Contributor

@feihugis feihugis commented Dec 3, 2020

Sort the input text by their length so that the padding for each batch can be as small as possible.

@feihugis
Copy link
Contributor Author

feihugis commented Dec 3, 2020

Without this PR:

Util Model Task Split BatchSize Samples Tokens Bleu Rouge Loss Perplexity Runtime(seconds) Throughput(samples/s) Throughput(tokens/s)
transformers_v3.0.2+fastseq_v0.0.4 facebook/bart-large-cnn cnn_dm.1k/raw val 32 1024 NA NA 34.92|14.95|25.28 NA NA 179 5.7 NA
transformers_v3.0.2+fastseq_v0.0.4 facebook/bart-large-cnn cnn_dm.1k/raw val 64 1024 NA NA 34.96|14.98|25.25 NA NA 100 10.2 NA
transformers_v3.0.2+fastseq_v0.0.4 facebook/bart-large-cnn cnn_dm.1k/raw val 128 1024 NA NA 34.96|14.92|25.28 NA NA 92 11.1 NA
transformers_v3.0.2+fastseq_v0.0.4 facebook/bart-large-cnn cnn_dm.1k/raw val 32 1024 NA NA 34.92|14.96|25.30 NA NA 136 7.5 NA
transformers_v3.0.2+fastseq_v0.0.4 facebook/bart-large-cnn cnn_dm.1k/raw val 64 1024 NA NA 34.95|14.93|25.24 NA NA 97 10.6 NA
transformers_v3.0.2+fastseq_v0.0.4 facebook/bart-large-cnn cnn_dm.1k/raw val 128 1024 NA NA 34.97|14.95|25.28 NA NA 92 11.1 NA
transformers_v3.0.2+fastseq_v0.0.4 facebook/bart-large-cnn cnn_dm.1k/raw val 32 1024 NA NA 34.93|14.95|25.27 NA NA 135 7.6 NA
transformers_v3.0.2+fastseq_v0.0.4 facebook/bart-large-cnn cnn_dm.1k/raw val 64 1024 NA NA 34.93|14.93|25.25 NA NA 97 10.6 NA
transformers_v3.0.2+fastseq_v0.0.4 facebook/bart-large-cnn cnn_dm.1k/raw val 128 1024 NA NA 34.96|14.96|25.25 NA NA 92 11.1 NA

With this PR:

Util Model Task Split BatchSize Samples Tokens Bleu Rouge Loss Perplexity Runtime(seconds) Throughput(samples/s) Throughput(tokens/s)
transformers_v3.0.2+fastseq_v0.0.4 facebook/bart-large-cnn cnn_dm.1k/raw val 32 1024 NA NA 34.93|14.95|25.26 NA NA 167 6.1 NA
transformers_v3.0.2+fastseq_v0.0.4 facebook/bart-large-cnn cnn_dm.1k/raw val 64 1024 NA NA 34.92|14.90|25.24 NA NA 98 10.4 NA
transformers_v3.0.2+fastseq_v0.0.4 facebook/bart-large-cnn cnn_dm.1k/raw val 128 1024 NA NA 35.02|15.01|25.30 NA NA 86 11.9 NA
transformers_v3.0.2+fastseq_v0.0.4 facebook/bart-large-cnn cnn_dm.1k/raw val 32 1024 NA NA 34.95|15.00|25.26 NA NA 126 8.1 NA
transformers_v3.0.2+fastseq_v0.0.4 facebook/bart-large-cnn cnn_dm.1k/raw val 64 1024 NA NA 34.91|14.88|25.21 NA NA 94 10.9 NA
transformers_v3.0.2+fastseq_v0.0.4 facebook/bart-large-cnn cnn_dm.1k/raw val 128 1024 NA NA 35.01|15.00|25.30 NA NA 87 11.8 NA
transformers_v3.0.2+fastseq_v0.0.4 facebook/bart-large-cnn cnn_dm.1k/raw val 32 1024 NA NA 34.96|15.02|25.29 NA NA 127 8.1 NA
transformers_v3.0.2+fastseq_v0.0.4 facebook/bart-large-cnn cnn_dm.1k/raw val 64 1024 NA NA 34.91|14.87|25.24 NA NA 94 10.9 NA
transformers_v3.0.2+fastseq_v0.0.4 facebook/bart-large-cnn cnn_dm.1k/raw val 128 1024 NA NA 35.03|15.00|25.32 NA NA 88 11.6 NA

Run the below command on GPU-1:

sudo docker run --gpus device="2" --network=host -v /datadrive:/datadrive -v /tmp:/tmp --shm-size=1g --ulimit memlock=-1 --ulimit stack=67108864 adsbrainwestus2.azurecr.io/fastseq:dev-py3 /bin/bash -c "cd /datadrive/fhu/github/fastseq && pip install -e . && cd benchmarks && bash models/hf_bart.sh"

@feihugis feihugis requested a review from a team December 3, 2020 19:04
@JiushengChen
Copy link
Contributor

Update doc and benchmark.

the indices in the original input list.
"""
is_ascending = -1 if reverse else 1
sorted_idx = sorted(
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Any perf for large data?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@yuyan2do Do you mean the benchmarking result on a larger dataset than the data in our benchmark script?

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I also have similar worry, as it loaded all data into memory, and then sort. Please check perf on a larger dataset.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Here is the test results on a larger dataset

  • 5,242,880 of examples (~ 16GB): sort took ~4.4 seconds; unsort took: 1.4 seconds;
  • 15,728,640 of examples (~ 48GB): sort took ~14.0 seconds; unsort took: 4.6 seconds;

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

4 participants