Skip to content

Deep structural comparison for Python dicts with per-field numeric tolerance and JSONPath-like targeting.

License

Notifications You must be signed in to change notification settings

metahris/dictlens

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

13 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

dictlens

PyPI version Python Versions License Downloads Build Status

Deep structural comparison for Python dicts with per-field numeric tolerance and JSONPath-like targeting.

Overview

dictlens is a lightweight Python library for comparing two nested dict structures (or any dict-like objects) with fine-grained tolerance control.

It supports:

  • βœ… Global absolute (abs_tol) and relative (rel_tol) numeric tolerances
  • βœ… Per-field tolerance overrides via JSONPath-like expressions
  • βœ… Ignoring volatile or irrelevant fields
  • βœ… Detailed debug logs that explain why two structures differ

It’s ideal for comparing API payloads, serialized models, ML metrics, or configurations where small numeric drifts are expected.

Installation

pip install dictlens

Quick Examples

from dictlens import compare_dicts

a = {"sensor": {"temp": 21.5, "humidity": 48.0}}
b = {"sensor": {"temp": 21.7, "humidity": 48.5}}

# Default tolerances
res = compare_dicts(a, b, abs_tol=0.05, rel_tol=0.01, show_debug=True)
print(res)  # False
### Output (debug)

[NUMERIC COMPARE] $.sensor.temp: 21.5 vs 21.7 | diff=0.200000 | abs_tol=0.05 | rel_tol=0.01 | threshold=0.217000
[MATCH NUMERIC] $.sensor.temp: within tolerance
[NUMERIC COMPARE] $.sensor.humidity: 48.0 vs 48.5 | diff=0.500000 | abs_tol=0.05 | rel_tol=0.01 | threshold=0.485000
[FAIL NUMERIC] $.sensor.humidity β†’ diff=0.500000 > threshold=0.485000
[FAIL IN DICT] $.sensor.humidity
[FAIL IN DICT] $..sensor

Ignore Fields

from dictlens import compare_dicts


def test_ignore_path_root_field():
    a = {"id": 1, "timestamp": "now"}
    b = {"id": 1, "timestamp": "later"}

    # Ignore only the root timestamp field
    ignore_fields = ["$.timestamp"]

    result = compare_dicts(a, b, ignore_fields=ignore_fields)
    print(result)  # True


def test_ignore_fields_complex():
    """
    Ignore multiple paths with different patterns:
      - Exact path:            $.user.profile.updated_at
      - Array wildcard:        $.devices[*].debug
      - explicit deep trace path: $.sessions[*].events[*].meta.trace
    """
    a = {
        "user": {
            "id": 7,
            "profile": {"updated_at": "2025-10-14T10:00:00Z", "age": 30}
        },
        "devices": [
            {"id": "d1", "debug": "alpha", "temp": 20.0},
            {"id": "d2", "debug": "beta", "temp": 20.1}
        ],
        "sessions": [
            {"events": [{"meta": {"trace": "abc"}, "value": 10.0}]},
            {"events": [{"meta": {"trace": "def"}, "value": 10.5}]}
        ]
    }

    b = {
        "user": {
            "id": 7,
            "profile": {"updated_at": "2025-10-15T10:00:05Z", "age": 30}
        },
        "devices": [
            {"id": "d1", "debug": "changed", "temp": 20.05},
            {"id": "d2", "debug": "changed", "temp": 20.18}
        ],
        "sessions": [
            {"events": [{"meta": {"trace": "xyz"}, "value": 10.01}]},
            {"events": [{"meta": {"trace": "uvw"}, "value": 10.52}]}
        ]
    }

    # Ignore updated_at (exact), all device.debug (wildcard), and explicit deep trace path
    ignore_fields = [
        "$.user.profile.updated_at",
        "$.devices[*].debug",
        "$.sessions[*].events[*].meta.trace",
    ]

    # Small global tolerance to allow minor sensor/value drift
    result = compare_dicts(
        a, b,
        ignore_fields=ignore_fields,
        abs_tol=0.05,
        rel_tol=0.02
    )
    print(result)  # True

Per-field Tolerances

You can override tolerances for specific paths using JSONPath-like expressions.

from dictlens import compare_dicts

a = {"a": 1.0, "b": 2.0}
b = {"a": 1.5, "b": 2.5}
abs_tol_fields = {"$.b": 1.0}
result = compare_dicts(a, b,abs_tol=0.5, abs_tol_fields=abs_tol_fields) 
print(result)  # True

array specific index tolerance

from dictlens import compare_dicts

a = {"sensors": [{"temp": 20.0}, {"temp": 21.0}]}
b = {"sensors": [{"temp": 20.05}, {"temp": 21.5}]}
abs_tol_fields = {"$.sensors[0].temp": 0.1, "$.sensors[1].temp": 1.0} 
result = compare_dicts(a, b, abs_tol_fields=abs_tol_fields)
print(result) # True

array wildcard tolerance

from dictlens import compare_dicts

a = {"sensors": [{"temp": 20.0}, {"temp": 21.0}]}
b = {"sensors": [{"temp": 20.2}, {"temp": 21.1}]}
abs_tol_fields = {"$.sensors[*].temp": 0.5}
result = compare_dicts(a, b, abs_tol_fields=abs_tol_fields)
print(result) # True

property wildcard tolerance

from dictlens import compare_dicts

a = {"network": {"n1": {"v": 10}, "n2": {"v": 10}}}
b = {"network": {"n1": {"v": 10.5}, "n2": {"v": 9.8}}}
abs_tol_fields = {"$.network.*.v": 1.0}
result = compare_dicts(a, b, abs_tol_fields=abs_tol_fields)
print(result) # True

deep nested field tolerance

from dictlens import compare_dicts

a = {"meta": {"deep": {"very": {"x": 100}}}}
b = {"meta": {"deep": {"very": {"x": 101}}}}
abs_tol_fields = {"$.meta.deep.very.x": 2.0}
result = compare_dicts(a, b, abs_tol_fields=abs_tol_fields)
print(result)  # True

combined global and field tolerances

from dictlens import compare_dicts

# Original reading (e.g., baseline snapshot)
a = {
    "station": {
        "id": "ST-42",
        "location": "Paris",
        "version": 1.0
    },
    "metrics": {
        "temperature": 21.5,
        "humidity": 48.0,
        "pressure": 1013.2,
        "wind_speed": 5.4
    },
    "status": {
        "battery_level": 96.0,
        "signal_strength": -72
    },
    "timestamp": "2025-10-14T10:00:00Z"
}

# New reading (e.g., after transmission)
b = {
    "station": {
        "id": "ST-42",
        "location": "Paris",
        "version": 1.03  # version drift allowed (custom abs_tol)
    },
    "metrics": {
        "temperature": 21.6,  # tiny drift (global rel_tol ok)
        "humidity": 49.3,  # bigger drift (custom abs_tol ok)
        "pressure": 1013.5,  # tiny drift (global ok)
        "wind_speed": 5.6  # small drift (global ok)
    },
    "status": {
        "battery_level": 94.8,  # within abs_tol
        "signal_strength": -69  # within rel_tol (5%)
    },
    "timestamp": "2025-10-14T10:00:02Z"  # ignored
}

abs_tol_fields = {
    "$.metrics.humidity": 2.0,  # humidity sensors are noisy
    "$.station.version": 0.1  # small version drift allowed
}

rel_tol_fields = {
    "$.status.signal_strength": 0.05,
    "$.metrics.wind_speed": 0.05,
    "$.status.battery_level": 0.02  # allow Β±2% battery drift
}

ignore_fields = ["$.meta.id"]

result = compare_dicts(
    a,
    b,
    abs_tol=0.05,
    rel_tol=0.01,
    abs_tol_fields=abs_tol_fields,
    rel_tol_fields=rel_tol_fields,
    ignore_fields=ignore_fields,
    show_debug=True
)

print(result)  # True

Supported Path Patterns

dictlens implements a simplified subset of JSONPath syntax:

Pattern Description
$.a.b Exact field path
$.items[0].price Specific array index
$.items[*].price Any array element
$.data.*.value Any property name

πŸ” Supported and Future JSONPath Features

dictlens currently supports a focused subset of JSONPath syntax designed for simplicity and performance in numeric comparisons.

Recursive descent ($..x) is not supported β€” use explicit deep paths instead (e.g., $.sessions[*].events[*].meta.trace).

These patterns cover the vast majority of practical comparison use cases.

advanced JSONPath features such as filters ([?()]), unions ([0,1,2]), slices ([0:2]), or expressions are not yet supported. Future versions of dictlens may expand support for these features once performance and readability trade-offs are fully evaluated.

Full API

compare_dicts(
    left: dict,
    right: dict,
    *,
    ignore_fields: list[str] = None,
    abs_tol: float = 0.0,
    rel_tol: float = 0.0,
    abs_tol_fields: dict[str, float] = None,
    rel_tol_fields: dict[str, float] = None,
    epsilon: float = 1e-12,
    show_debug: bool = False,
) -> bool

Arguments

Parameter D escription
left, right The two structures to compare.
ignore_fields Keys to ignore during comparison.
abs_tol Global absolute tolerance for numeric drift.
rel_tol Global relative tolerance.
abs_tol_fields Dict of per-field absolute tolerances.
rel_tol_fields Dict of per-field relative tolerances.
epsilon Small float to absorb FP rounding errors.
show_debug If True, prints detailed comparison logs.

Tips

  • Both dicts must have the same keys β€” missing keys fail the comparison.
  • Lists are compared in order.
  • For dataclasses or Pydantic models, call .dict() first: compare_dicts(model_a.dict(), model_b.dict())
  • Numeric strings ("1.0") are not treated as numbers. Only real numeric types (int/float) are compared numerically.

Use Cases

  • Snapshot testing of API responses or data models.
  • Machine-learning drift and metric comparison.
  • CI/CD pipelines to verify payload consistency.
  • Configuration or schema diffing.

License

Apache License 2.0 β€” Β© 2025 Mohamed Tahri Contributions welcome 🀝

About

Deep structural comparison for Python dicts with per-field numeric tolerance and JSONPath-like targeting.

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages