Author: Lance Jepsen
License: GPL-3.0
Status: Actively Maintained
Tech Stack: Python · Streamlit · TensorFlow · Scikit-Learn · Plotly · CoinGecko API
The ML Crypto Analyzer is an ML-driven crypto forecasting dashboard.
It combines modern machine learning models with real-time market data to produce a visually stunning, multi-panel trading interface.
This project implements:
- 🔮 Hybrid forecasting using RandomForestRegressor + an LSTM volatility model
- 📈 Chart overlays with AI confidence cones
- 🔍 RSI & MACD indicators
- 🤖 AI-generated BUY / SELL / HOLD signals
- ⚡ ML training spinner for user transparency
- 🎨 Custom cyberpunk visual theme
- 🪙 Top 30 cryptocurrencies (non-stablecoins)
If you want a GitHub project that showcases machine learning, data visualization, real-time APIs, and UI design, this is the perfect portfolio-ready app.
- Hybrid ML engine:
- RandomForestRegressor predicts OHLC next-step prices
- LSTM predicts volatility & drives confidence cone width
- Forecast horizon: 5–50 minutes
- Timestamp normalization for reliable model training
- Automatic RF-only fallback when LSTM data is insufficient
- Multi-panel layout:
- Panel 1 — Price chart + forecast candles + confidence cones
- Panel 2 — RSI (fully isolated)
- Panel 3 — MACD (fully isolated)
- Neon color palette
- Auto-expands for long forecasts
- RSI (with boundary protection)
- MACD Line
- Signal Line
- Histogram
A custom AI scoring engine that evaluates:
- RSI
- MACD crossovers
- Histogram momentum
- Short-term trend direction
Outputs:
- 🟢 BUY
- 🔴 SELL
- 🟡 HOLD
- Real-time price data via CoinGecko API
- Top 30 cryptocurrencies by market cap (excluding stablecoins)
- ML loading spinner
- Responsive layout
- Error handling
- Streamlit caching for performance
(No stablecoins, no duplicates, ML-compatible)
bitcoin ethereum binancecoin solana ripple dogecoin cardano tron avalanche-2 shiba-inu polkadot chainlink polygon internet-computer litecoin uniswap near aptos stellar injective-protocol arbitrum hedera-hashgraph cosmos vechain maker the-graph quant-network kaspa optimism mantle
┌───────────────────────────────┐
│ CoinGecko API │
└──────────────┬────────────────┘
│
Fetch OHLC / Market Data
│
┌─────────────────────▼─────────────────────┐
│ Streamlit App │
│ (UI, controls, tables, multi-panel) │
└───────────────┬───────────────────────────┘
│
┌───────────────────────────┼────────────────────────────┐
│ │ │
▼ ▼ ▼
Price & Forecast Panel RSI Panel MACD Panel
Plotly Candlesticks + ML (Indicator only) (Indicator only)
│
▼
AI Buy/Sell Signal Engine
│
▼
Hybrid ML Forecast Engine
(RandomForestRegressor + LSTM)
To install the required dependencies, run the following command in your terminal:
pip install -r requirements.txtThis will install the necessary packages for the project, including Streamlit, Plotly, Scikit-learn, TensorFlow, and pandas.
To run the application, execute the following command in your terminal:
streamlit run main.pyThen open:
This will launch the Streamlit app, allowing you to interact with the cryptocurrency forecasting dashboard.
🔮 RandomForestRegressor
Used for next-step OHLC prediction.
🔮 LSTM Volatility Predictor
Uses rolling volatility windows to produce smooth cone widths.
🔮 Hybrid Method
RF predicts direction + price LSTM predicts volatility → width of confidence cone
🔁 Fallback Mode
If insufficient data:
LSTM disabled
RandomForest-only forecast
RSI & MACD still displayed
Python 3.10+
TensorFlow 2.11–2.15
Streamlit 1.25+
64-bit OS recommended
Internet connection (CoinGecko API)
This project is licensed under the GNU General Public License v3.0.
You may:
✔ Use ✔ Modify ✔ Share ✔ Redistribute
…but all derivative works must also be:
GPL-3.0 licensed
Properly attributed to Lance Jepsen
Include clear descriptions of changes
Full license: https://www.gnu.org/licenses/gpl-3.0.en.html
Data. Machine Learning. Real-Time Crypto.
Lance Jepsen
Machine Learning · Automation · Data Engineering
Enthusiast & creator of the ML Crypto Analyzer


