Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 5 additions & 3 deletions src/transformers/models/blip_2/processing_blip_2.py
Original file line number Diff line number Diff line change
Expand Up @@ -67,7 +67,8 @@ def __init__(self, image_processor, tokenizer, num_query_tokens=None, **kwargs):
tokenizer.add_tokens([self.image_token], special_tokens=True)
else:
self.image_token = tokenizer.image_token
self.num_query_tokens = num_query_tokens
# Default to 32 if missing, matching official BLIP-2 checkpoints
self.num_query_tokens = num_query_tokens if num_query_tokens is not None else 32

super().__init__(image_processor, tokenizer)

Expand Down Expand Up @@ -107,8 +108,9 @@ def __call__(
return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None)
max_length = output_kwargs["text_kwargs"].pop("max_length", None)
if max_length is not None:
output_kwargs["text_kwargs"]["max_length"] = max_length - self.num_query_tokens

adjusted_max_length = max_length - self.num_query_tokens
if adjusted_max_length > 0:
output_kwargs["text_kwargs"]["max_length"] = adjusted_max_length
encoding = BatchFeature(tensor_type=return_tensors)
if text is not None:
if isinstance(text, str):
Expand Down
13 changes: 13 additions & 0 deletions tests/models/blip_2/test_processing_blip_2.py
Original file line number Diff line number Diff line change
Expand Up @@ -118,3 +118,16 @@ def test_tokenizer_decode(self):
decoded_tok = tokenizer.batch_decode(predicted_ids)

self.assertListEqual(decoded_tok, decoded_processor)

def test_none_num_query_tokens_is_handled(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()

processor = Blip2Processor(tokenizer=tokenizer, image_processor=image_processor, num_query_tokens=None)

input_str = "hello world"

outputs = processor(text=input_str, max_length=20, return_tensors="np")
self.assertEqual(processor.num_query_tokens, 32)
self.assertIn("input_ids", outputs)
self.assertIn("attention_mask", outputs)