Skip to content

ggml : implement GEGLU_ERF and GEGLU_QUICK ops #14445

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 6 commits into from
Jul 3, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 28 additions & 0 deletions ggml/include/ggml.h
Original file line number Diff line number Diff line change
Expand Up @@ -550,6 +550,8 @@ extern "C" {
GGML_GLU_OP_REGLU,
GGML_GLU_OP_GEGLU,
GGML_GLU_OP_SWIGLU,
GGML_GLU_OP_GEGLU_ERF,
GGML_GLU_OP_GEGLU_QUICK,

GGML_GLU_OP_COUNT,
};
Expand Down Expand Up @@ -1137,6 +1139,22 @@ extern "C" {
struct ggml_context * ctx,
struct ggml_tensor * a);

GGML_API struct ggml_tensor * ggml_geglu_erf(
struct ggml_context * ctx,
struct ggml_tensor * a);

GGML_API struct ggml_tensor * ggml_geglu_erf_swapped(
struct ggml_context * ctx,
struct ggml_tensor * a);

GGML_API struct ggml_tensor * ggml_geglu_quick(
struct ggml_context * ctx,
struct ggml_tensor * a);

GGML_API struct ggml_tensor * ggml_geglu_quick_swapped(
struct ggml_context * ctx,
struct ggml_tensor * a);

// A: n columns, r rows,
// B: n columns, r rows,
GGML_API struct ggml_tensor * ggml_glu_split(
Expand All @@ -1160,6 +1178,16 @@ extern "C" {
struct ggml_tensor * a,
struct ggml_tensor * b);

GGML_API struct ggml_tensor * ggml_geglu_erf_split(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);

GGML_API struct ggml_tensor * ggml_geglu_quick_split(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);

// normalize along rows
GGML_API struct ggml_tensor * ggml_norm(
struct ggml_context * ctx,
Expand Down
2 changes: 2 additions & 0 deletions ggml/src/ggml-cpu/ggml-cpu.c
Original file line number Diff line number Diff line change
Expand Up @@ -2172,6 +2172,8 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
case GGML_GLU_OP_REGLU:
case GGML_GLU_OP_GEGLU:
case GGML_GLU_OP_SWIGLU:
case GGML_GLU_OP_GEGLU_ERF:
case GGML_GLU_OP_GEGLU_QUICK:
{
n_tasks = n_threads;
} break;
Expand Down
294 changes: 294 additions & 0 deletions ggml/src/ggml-cpu/ops.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -3614,6 +3614,292 @@ static void ggml_compute_forward_swiglu(
}
}

// ggml_compute_forward_geglu_erf

static void ggml_compute_forward_geglu_erf_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {

const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
char * src0_d = (char *) src0->data;
char * src1_d = (char *) (src1 ? src1->data : src0->data);
const size_t src0_o = src0->nb[1];
const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];

GGML_ASSERT(ggml_is_contiguous_1(src0));
GGML_ASSERT(ggml_is_contiguous_1(dst));

if (src1) {
GGML_ASSERT(ggml_is_contiguous_1(src1));
GGML_ASSERT(src0->type == src1->type);
}

const int ith = params->ith;
const int nth = params->nth;

const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
const int nr = ggml_nrows(src0);

GGML_ASSERT(dst->ne[0] == nc);
GGML_ASSERT(ggml_nrows(dst) == nr);

const int32_t swapped = ggml_get_op_params_i32(dst, 1);

// rows per thread
const int dr = (nr + nth - 1)/nth;

// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);

for (int i1 = ir0; i1 < ir1; i1++) {
float * src0_p = (float *) (src0_d + i1*src0_o);
float * src1_p = (float *) (src1_d + i1*src1_o);

if (!src1) {
src0_p += swapped ? nc : 0;
src1_p += swapped ? 0 : nc;
}

ggml_vec_geglu_erf_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);

#ifndef NDEBUG
for (int k = 0; k < nc; k++) {
const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
GGML_UNUSED(x);
assert(!isnan(x));
assert(!isinf(x));
}
#endif
}
}

static void ggml_compute_forward_geglu_erf_f16(
const ggml_compute_params * params,
ggml_tensor * dst) {

const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
char * src0_d = (char *) src0->data;
char * src1_d = (char *) (src1 ? src1->data : src0->data);
const size_t src0_o = src0->nb[1];
const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];

GGML_ASSERT(ggml_is_contiguous_1(src0));
GGML_ASSERT(ggml_is_contiguous_1(dst));

if (src1) {
GGML_ASSERT(ggml_is_contiguous_1(src1));
GGML_ASSERT(src0->type == src1->type);
}

const int ith = params->ith;
const int nth = params->nth;

const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
const int nr = ggml_nrows(src0);

GGML_ASSERT(dst->ne[0] == nc);
GGML_ASSERT(ggml_nrows(dst) == nr);

const int32_t swapped = ggml_get_op_params_i32(dst, 1);

// rows per thread
const int dr = (nr + nth - 1)/nth;

// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);

for (int i1 = ir0; i1 < ir1; i1++) {
ggml_fp16_t * src0_p = (ggml_fp16_t *) (src0_d + i1*src0_o);
ggml_fp16_t * src1_p = (ggml_fp16_t *) (src1_d + i1*src1_o);

if (!src1) {
src0_p += swapped ? nc : 0;
src1_p += swapped ? 0 : nc;
}

ggml_vec_geglu_erf_f16(nc, (ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);

#ifndef NDEBUG
for (int k = 0; k < nc; k++) {
const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
const float v = GGML_FP16_TO_FP32(x);
GGML_UNUSED(v);
assert(!isnan(v));
assert(!isinf(v));
}
#endif
}
}

static void ggml_compute_forward_geglu_erf(
const ggml_compute_params * params,
ggml_tensor * dst) {

const ggml_tensor * src0 = dst->src[0];

switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_geglu_erf_f32(params, dst);
} break;
case GGML_TYPE_F16:
{
ggml_compute_forward_geglu_erf_f16(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}

// ggml_compute_forward_geglu_quick

static void ggml_compute_forward_geglu_quick_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {

const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
char * src0_d = (char *) src0->data;
char * src1_d = (char *) (src1 ? src1->data : src0->data);
const size_t src0_o = src0->nb[1];
const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];

GGML_ASSERT(ggml_is_contiguous_1(src0));
GGML_ASSERT(ggml_is_contiguous_1(dst));

if (src1) {
GGML_ASSERT(ggml_is_contiguous_1(src1));
GGML_ASSERT(src0->type == src1->type);
}

const int ith = params->ith;
const int nth = params->nth;

const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
const int nr = ggml_nrows(src0);

GGML_ASSERT(dst->ne[0] == nc);
GGML_ASSERT(ggml_nrows(dst) == nr);

const int32_t swapped = ggml_get_op_params_i32(dst, 1);

// rows per thread
const int dr = (nr + nth - 1)/nth;

// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);

for (int i1 = ir0; i1 < ir1; i1++) {
float * src0_p = (float *) (src0_d + i1*src0_o);
float * src1_p = (float *) (src1_d + i1*src1_o);

if (!src1) {
src0_p += swapped ? nc : 0;
src1_p += swapped ? 0 : nc;
}

ggml_vec_geglu_quick_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);

#ifndef NDEBUG
for (int k = 0; k < nc; k++) {
const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
GGML_UNUSED(x);
assert(!isnan(x));
assert(!isinf(x));
}
#endif
}
}

static void ggml_compute_forward_geglu_quick_f16(
const ggml_compute_params * params,
ggml_tensor * dst) {

const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
char * src0_d = (char *) src0->data;
char * src1_d = (char *) (src1 ? src1->data : src0->data);
const size_t src0_o = src0->nb[1];
const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];

GGML_ASSERT(ggml_is_contiguous_1(src0));
GGML_ASSERT(ggml_is_contiguous_1(dst));

if (src1) {
GGML_ASSERT(ggml_is_contiguous_1(src1));
GGML_ASSERT(src0->type == src1->type);
}

const int ith = params->ith;
const int nth = params->nth;

const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
const int nr = ggml_nrows(src0);

GGML_ASSERT(dst->ne[0] == nc);
GGML_ASSERT(ggml_nrows(dst) == nr);

const int32_t swapped = ggml_get_op_params_i32(dst, 1);

// rows per thread
const int dr = (nr + nth - 1)/nth;

// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);

for (int i1 = ir0; i1 < ir1; i1++) {
ggml_fp16_t * src0_p = (ggml_fp16_t *) (src0_d + i1*src0_o);
ggml_fp16_t * src1_p = (ggml_fp16_t *) (src1_d + i1*src1_o);

if (!src1) {
src0_p += swapped ? nc : 0;
src1_p += swapped ? 0 : nc;
}

ggml_vec_geglu_quick_f16(nc, (ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);

#ifndef NDEBUG
for (int k = 0; k < nc; k++) {
const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
const float v = GGML_FP16_TO_FP32(x);
GGML_UNUSED(v);
assert(!isnan(v));
assert(!isinf(v));
}
#endif
}
}

static void ggml_compute_forward_geglu_quick(
const ggml_compute_params * params,
ggml_tensor * dst) {

const ggml_tensor * src0 = dst->src[0];

switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_geglu_quick_f32(params, dst);
} break;
case GGML_TYPE_F16:
{
ggml_compute_forward_geglu_quick_f16(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}

// ggml_compute_forward_norm

static void ggml_compute_forward_norm_f32(
Expand Down Expand Up @@ -8688,6 +8974,14 @@ void ggml_compute_forward_glu(
{
ggml_compute_forward_swiglu(params, dst);
} break;
case GGML_GLU_OP_GEGLU_ERF:
{
ggml_compute_forward_geglu_erf(params, dst);
} break;
case GGML_GLU_OP_GEGLU_QUICK:
{
ggml_compute_forward_geglu_quick(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
Expand Down
Loading
Loading