Skip to content

fhalab/substrate_aware_zs

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

About

  • A repository for our paper titled "Substrate-Aware Zero-Shot Predictors for Non-Native Enzyme Activities".
  • See Zenodo for data fig1

Environments

  • The main environment is substrate_aware.yml
  • The coves.yml, esmif.yml, and plip.yml files are conda environment for the COVES, ESM-IF, and PLIP zero-shot calcualtion, respectively.
  • Frozen versions of the dependencies can be found under envs/fronzen/.

Vina

  • Install vina following the instructions in the documentation here
  • Create a seperate conda environment for vina
conda create --name vina_env python=3.9.7 -y
conda activate vina_env
conda install -c conda-forge numpy openbabel pdbfixer scipy rdkit openmm biopython -y
pip install meeko
conda install -c conda-forge mdanalysis
pip install numpy==1.24.4
  • Run the zero-shot prediction using the following command
~/miniconda3/envs/vina/bin/python -m tests.test_zs-vina

LigandMPNN

  • Get code and model parameters
git clone https://github.com/dauparas/LigandMPNN.git
cd LigandMPNN
bash get_model_params.sh "./model_params"
  • Modify the paths in substrate_aware.zs.ligandmpnn and/or tests.test_zs-ligandmpnn accordingly.

FlowSite

  • Get code and moedel parameters
git clone https://github.com/HannesStark/FlowSite.git
cd FlowSite
mkdir model_params
cd model_params
  • Download the model parameters in a zip file based on the repo from here.
  • Unzip as needed and check that there are subfolders called lf5t55w4 and b1ribx1a
  • Modify the path in substrate_aware.zs.ligandmpnn and/or tests.test_zs-ligandmpnn accordingly.
  • Set up the conda environment
conda create -n flowsite python=3.10
conda activate flowsite
pip install torch==2.1.0+cu121 torchvision==0.16.0+cu121 torchaudio==2.1.0+cu121 -f https://download.pytorch.org/whl/torch_stable.html
pip install torch-scatter -f https://data.pyg.org/whl/torch-2.1.0+cu121.html
pip install torch-sparse -f https://data.pyg.org/whl/torch-2.1.0+cu121.html
pip install torch-cluster -f https://data.pyg.org/whl/torch-2.1.0+cu121.html
pip install torch-spline-conv -f https://data.pyg.org/whl/torch-2.1.0+cu121.html
pip install torch-geometric
pip install rdkit
pip install pyyaml wandb biopython spyrmsd einops biopandas plotly prody tqdm lightning imageio datasets
pip install e3nn
  • Troubleshoot
pip uninstall numpy
pip install numpy==1.23.5

Datasets

The data/ folder is organized as follows:

  • lib/ contains CSV files with sequence (AAs), fitness, and selectivity (when applicable) data.
    • Each file is named using the format {enzyme}_{substrate}.csv.
    • Note: ParLQ-a is sometime abbreviated as ParLQ
  • seq/ contains FASTA files for each enzyme sequence.
  • structure/ contains the structural files in PDB format.
    • ParLQ.pdb is taken from Yang and Lal et al. (2025).
    • PfTrpB.pdb corresponds to chain A of PDB entry 5DW0.
    • Rma.pdb corresponds to PDB entry 3CP5.
    • apo/ contains apo (substrate-free) structures in PDB format.
    • clean/ contains cleaned structures (solvent removed) in PDB format.
    • docked/ contains docked structures in CIF format, generated using AF3 or Chai.
      • See docked/README.md for additional information on the docked structures.
  • evmodel/ contains EVcouplings model files (.model) for each enzyme, which are used to calculate EVmutation scores.
  • evmodel_dets/ contains detailed metadata for the corresponding EVcouplings models.

Preprocessing

  • Run preprocess_all from substrate_aware.preprocess to preprocess the data.

Zero-shot prediction

  • Each zero-shot predictor corresponds to a module in substrate_aware.zs.
  • run_all_combzs in substrate_aware.zs can be used to combine all generated zero-shot scores for each dataset.

Analysis

  • The analysis scripts are located in substrate_aware.analysis.

Contact

About

Substrate-Aware Zero-Shot Predictors for Non-Native Enzyme Activities

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages