Skip to content

添加fine_tuning,以及训练时可修改参数 #34

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion captcha_train.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ def main():
optimizer = torch.optim.Adam(cnn.parameters(), lr=learning_rate)

# Train the Model
train_dataloader = my_dataset.get_train_data_loader()
train_dataloader = my_dataset.get_train_data_loader(batch_size=batch_size)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_dataloader):
images = Variable(images)
Expand Down
43 changes: 43 additions & 0 deletions fine_tuning.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,43 @@
import torch
import torch.nn as nn
from torch.autograd import Variable
import my_dataset
from captcha_cnn_model import CNN

learning_rate = 0.001
batch_size = 10
num_epochs = 15


def fine_tuning():
cnn = CNN()
cnn.eval()
cnn.load_state_dict(torch.load('model.pkl'))
print("load cnn net.")
criterion = nn.MultiLabelSoftMarginLoss()
optimizer = torch.optim.Adam(cnn.parameters(), lr=learning_rate)
train_data_loader = my_dataset.get_train_data_loader(batch_size)

for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_data_loader):
images = Variable(images)
labels = Variable(labels.float())
predict_labels = cnn(images)
# print(predict_labels.type)
# print(labels.type)
loss = criterion(predict_labels, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i + 1) % 10 == 0:
print("epoch:", epoch, "step:", i, "loss:", loss.item())
if (i + 1) % 100 == 0:
torch.save(cnn.state_dict(), "./model.pkl") # current is model.pkl
print("save model")
print("epoch:", epoch, "step:", i, "loss:", loss.item())
torch.save(cnn.state_dict(), "./model.pkl") # current is model.pkl
print("save last model")

if __name__ == '__main__':
fine_tuning()

4 changes: 2 additions & 2 deletions my_dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,10 +30,10 @@ def __getitem__(self, idx):
transforms.ToTensor(),
# transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
def get_train_data_loader():
def get_train_data_loader(batch_size=64):

dataset = mydataset(captcha_setting.TRAIN_DATASET_PATH, transform=transform)
return DataLoader(dataset, batch_size=64, shuffle=True)
return DataLoader(dataset, batch_size=batch_size, shuffle=True)

def get_test_data_loader():
dataset = mydataset(captcha_setting.TEST_DATASET_PATH, transform=transform)
Expand Down