Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ At their core, Nadaraya--Watson estimators rely on some similarity kernel $\alph
$$\begin{aligned}
\alpha(\mathbf{q}, \mathbf{k}) & = \exp\left(-\frac{1}{2} \|\mathbf{q} - \mathbf{k}\|^2 \right) && \textrm{Gaussian;} \\
\alpha(\mathbf{q}, \mathbf{k}) & = 1 \textrm{ if } \|\mathbf{q} - \mathbf{k}\| \leq 1 && \textrm{Boxcar;} \\
\alpha(\mathbf{q}, \mathbf{k}) & = \mathop{\mathrm{max}}\left(0, 1 - \|\mathbf{q} - \mathbf{k}\|\right) && \textrm{Epanechikov.}
\alpha(\mathbf{q}, \mathbf{k}) & = \mathop{\mathrm{max}}\left(0, 1 - \|\mathbf{q} - \mathbf{k}\|\right) && \textrm{Triangular.}
\end{aligned}
$$

Expand Down Expand Up @@ -77,25 +77,25 @@ def constant(x):
return 1.0 + 0 * x

if tab.selected('pytorch'):
def epanechikov(x):
def triangular(x):
return torch.max(1 - d2l.abs(x), torch.zeros_like(x))
if tab.selected('mxnet'):
def epanechikov(x):
def triangular(x):
return np.maximum(1 - d2l.abs(x), 0)
if tab.selected('tensorflow'):
def epanechikov(x):
def triangular(x):
return tf.maximum(1 - d2l.abs(x), 0)
if tab.selected('jax'):
def epanechikov(x):
def triangular(x):
return jnp.maximum(1 - d2l.abs(x), 0)
```

```{.python .input}
%%tab all
fig, axes = d2l.plt.subplots(1, 4, sharey=True, figsize=(12, 3))

kernels = (gaussian, boxcar, constant, epanechikov)
names = ('Gaussian', 'Boxcar', 'Constant', 'Epanechikov')
kernels = (gaussian, boxcar, constant, triangular)
names = ('Gaussian', 'Boxcar', 'Constant', 'Triangular')
x = d2l.arange(-2.5, 2.5, 0.1)
for kernel, name, ax in zip(kernels, names, axes):
if tab.selected('pytorch', 'mxnet', 'tensorflow'):
Expand Down
Loading