-
-
Notifications
You must be signed in to change notification settings - Fork 24
model_device
Cyber Official edited this page Aug 21, 2025
·
4 revisions
These arguments control which AI model is used and how it runs on your hardware.
| Flag | Description |
|---|---|
--model_source |
AI model backend (whisper, fasterwhisper, openvino). |
--ram |
Model size (choices: 1gb, 2gb, 3gb, 6gb, 7gb, 11gb-v2, 11gb-v3). |
--ramforce |
Force the script to use the selected RAM/VRAM model. |
--fp16 |
Enable FP16 mode for faster inference (may reduce accuracy slightly). |
--compute_type |
Quantization of model while loading (default, int8, float16, etc.). |
--device |
Select device for inference (auto, cpu, cuda, intel-igpu, intel-dgpu, intel-npu). |
--cuda_device |
Select CUDA device index (default: 0). |
--model_dir |
Directory to store/download models. |
--intelligent_mode |
Automatically switch to larger model if accuracy is below threshold. |
Choose AI model backend for transcription:
-
whisper: OpenAI's original implementation (slowest, most compatible) -
fasterwhisper: Optimized C++ implementation (fastest, recommended) -
openvino: Intel optimization for Intel hardware (good for Intel CPUs/GPUs)
Example:
python synthalingua.py --model_source fasterwhisperChoose a model size that fits your hardware. For example:
python synthalingua.py --ram 6gbModel sizes and descriptions:
-
1gb: tiny (fastest, least accurate) -
2gb: base (good balance) -
3gb: small -
6gb: medium -
7gb: turbo (fast large model) -
11gb-v2/11gb-v3: large (most accurate, slowest)
Use --ramforce to override automatic checks (use with caution).
Enables half-precision mode for faster processing on supported GPUs.
Controls quantization of model while loading. Options include:
-
default: Automatic selection -
int8,int8_float32,int8_float16,int8_bfloat16: 8-bit integer variants -
int16: 16-bit integer -
float16,bfloat16: 16-bit floating point variants -
float32: 32-bit floating point
Selects processing device for AI model inference:
-
auto: Automatically selects best available device -
cuda: NVIDIA GPU (fastest) -
cpu: Processor (universally compatible) -
intel-igpu: Intel integrated graphics -
intel-dgpu: Intel discrete GPU -
intel-npu: Intel Neural Processing Unit
Example:
python synthalingua.py --device cuda --cuda_device 1Change where models are stored/downloaded. Example:
python synthalingua.py --model_dir "C:/models"If enabled, the system will automatically determine if the current output is below accuracy threshold and switch to a larger model for improved transcription quality.