Skip to content

model_device

Cyber Official edited this page Aug 21, 2025 · 4 revisions

Model & Device Options

These arguments control which AI model is used and how it runs on your hardware.

Arguments

Flag Description
--model_source AI model backend (whisper, fasterwhisper, openvino).
--ram Model size (choices: 1gb, 2gb, 3gb, 6gb, 7gb, 11gb-v2, 11gb-v3).
--ramforce Force the script to use the selected RAM/VRAM model.
--fp16 Enable FP16 mode for faster inference (may reduce accuracy slightly).
--compute_type Quantization of model while loading (default, int8, float16, etc.).
--device Select device for inference (auto, cpu, cuda, intel-igpu, intel-dgpu, intel-npu).
--cuda_device Select CUDA device index (default: 0).
--model_dir Directory to store/download models.
--intelligent_mode Automatically switch to larger model if accuracy is below threshold.

Details & Examples

--model_source

Choose AI model backend for transcription:

  • whisper: OpenAI's original implementation (slowest, most compatible)
  • fasterwhisper: Optimized C++ implementation (fastest, recommended)
  • openvino: Intel optimization for Intel hardware (good for Intel CPUs/GPUs)

Example:

python synthalingua.py --model_source fasterwhisper

--ram & --ramforce

Choose a model size that fits your hardware. For example:

python synthalingua.py --ram 6gb

Model sizes and descriptions:

  • 1gb: tiny (fastest, least accurate)
  • 2gb: base (good balance)
  • 3gb: small
  • 6gb: medium
  • 7gb: turbo (fast large model)
  • 11gb-v2/11gb-v3: large (most accurate, slowest)

Use --ramforce to override automatic checks (use with caution).

--fp16

Enables half-precision mode for faster processing on supported GPUs.

--compute_type

Controls quantization of model while loading. Options include:

  • default: Automatic selection
  • int8, int8_float32, int8_float16, int8_bfloat16: 8-bit integer variants
  • int16: 16-bit integer
  • float16, bfloat16: 16-bit floating point variants
  • float32: 32-bit floating point

--device & --cuda_device

Selects processing device for AI model inference:

  • auto: Automatically selects best available device
  • cuda: NVIDIA GPU (fastest)
  • cpu: Processor (universally compatible)
  • intel-igpu: Intel integrated graphics
  • intel-dgpu: Intel discrete GPU
  • intel-npu: Intel Neural Processing Unit

Example:

python synthalingua.py --device cuda --cuda_device 1

--model_dir

Change where models are stored/downloaded. Example:

python synthalingua.py --model_dir "C:/models"

--intelligent_mode

If enabled, the system will automatically determine if the current output is below accuracy threshold and switch to a larger model for improved transcription quality.


Back to Index

Clone this wiki locally