Skip to content

⚡️ Speed up function pivot_table by 4,131% #35

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
40 changes: 23 additions & 17 deletions src/numpy_pandas/dataframe_operations.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,38 +61,44 @@ def dataframe_merge(
def pivot_table(
df: pd.DataFrame, index: str, columns: str, values: str, aggfunc: str = "mean"
) -> dict[Any, dict[Any, float]]:
result = {}
# Select aggregation function
if aggfunc == "mean":

def agg_func(values):
return sum(values) / len(values)

elif aggfunc == "sum":

def agg_func(values):
return sum(values)

elif aggfunc == "count":

def agg_func(values):
return len(values)

else:
raise ValueError(f"Unsupported aggregation function: {aggfunc}")

# Pre-extract columns as numpy arrays (or pandas Series), much faster than row-by-row iloc
index_col = df[index].values
column_col = df[columns].values
value_col = df[values].values

grouped_data = {}
for i in range(len(df)):
row = df.iloc[i]
index_val = row[index]
column_val = row[columns]
value = row[values]
if index_val not in grouped_data:
grouped_data[index_val] = {}
if column_val not in grouped_data[index_val]:
grouped_data[index_val][column_val] = []
grouped_data[index_val][column_val].append(value)
for index_val in grouped_data:
result[index_val] = {}
for column_val in grouped_data[index_val]:
result[index_val][column_val] = agg_func(
grouped_data[index_val][column_val]
)

# Use direct iteration on arrays, much faster than df.iloc[index]
for idx_val, col_val, val in zip(index_col, column_col, value_col):
group_dict = grouped_data.setdefault(idx_val, {})
group_list = group_dict.setdefault(col_val, [])
group_list.append(val)

# Aggregate
result = {}
for idx_val, col_dict in grouped_data.items():
result[idx_val] = {}
for col_val, vals in col_dict.items():
result[idx_val][col_val] = agg_func(vals)
return result


Expand Down