Skip to content

⚡️ Speed up function numerical_integration_rectangle by 56% #17

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Conversation

codeflash-ai[bot]
Copy link

@codeflash-ai codeflash-ai bot commented Jun 20, 2025

📄 56% (0.56x) speedup for numerical_integration_rectangle in src/numpy_pandas/numerical_methods.py

⏱️ Runtime : 1.53 milliseconds 982 microseconds (best of 237 runs)

📝 Explanation and details

Here are the main bottlenecks per your profiling.

  • result += f(x) is very slow: calling a Python function is expensive in tight loops
  • x = a + i * h is next
  • The Python loop itself (for i in range(n)) adds overhead

Optimization strategies:

  • Use numpy for vectorization where possible, which can calculate all points in one go and sum them, greatly reducing Python-level looping/overhead. Numpy will only help if the f function can work on arrays, but we can provide a fast path and fall back otherwise.
  • Otherwise, use functools.lru_cache to cache repeated calls if f is expensive and pure, but often this helps only for certain functions.
  • a + i*h can be replaced with a precomputed numpy array of x values.

Here's a rewritten version that will be much faster for f functions that accept numpy arrays, but will still work with all standard Python callables (falling back to the original loop).

Explanation:

  • If f is numpy-aware (works with numpy arrays), the whole integration will run in compiled code (very fast).
  • Otherwise, it falls back to your original code path with a minor optimization—unpacking a + i * h is already cheap.
  • No lost precision or semantic change.
  • Works for all input functions and preserves all existing comments and function signatures.

Note:
If you are not allowed to use numpy (or want to further speed up for "slow" pure-Python functions), consider using Cython or numba. But for pure Python, numpy vectorization gives you the biggest, simplest speedup.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 41 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 1 Passed
📊 Tests Coverage 100.0%
🌀 Generated Regression Tests and Runtime
import math  # for math functions in test cases
# function to test
from typing import Callable

# imports
import pytest  # used for our unit tests
from src.numpy_pandas.numerical_methods import numerical_integration_rectangle

# unit tests

# 1. Basic Test Cases

def test_constant_function():
    # Integrate f(x) = 5 from 0 to 10, exact result is 50
    codeflash_output = numerical_integration_rectangle(lambda x: 5, 0, 10, 100); result = codeflash_output # 12.3μs -> 12.2μs (1.03% faster)

def test_linear_function():
    # Integrate f(x) = x from 0 to 1, exact result is 0.5
    codeflash_output = numerical_integration_rectangle(lambda x: x, 0, 1, 100); result = codeflash_output # 10.4μs -> 8.54μs (21.9% faster)

def test_quadratic_function():
    # Integrate f(x) = x^2 from 0 to 1, exact result is 1/3
    codeflash_output = numerical_integration_rectangle(lambda x: x**2, 0, 1, 100); result = codeflash_output # 14.0μs -> 9.12μs (53.0% faster)

def test_integration_reversed_bounds():
    # Integrate f(x) = x from 1 to 0, should still be 0.5
    codeflash_output = numerical_integration_rectangle(lambda x: x, 1, 0, 100); result = codeflash_output # 10.1μs -> 8.42μs (19.8% faster)

def test_integration_with_negative_bounds():
    # Integrate f(x) = x from -1 to 1, exact result is 0
    codeflash_output = numerical_integration_rectangle(lambda x: x, -1, 1, 100); result = codeflash_output # 10.2μs -> 8.33μs (22.5% faster)

def test_integration_with_float_bounds():
    # Integrate f(x) = 2x from 0.5 to 2.5, exact result is [x^2] from 0.5 to 2.5 = 6.25 - 0.25 = 6.0
    codeflash_output = numerical_integration_rectangle(lambda x: 2 * x, 0.5, 2.5, 100); result = codeflash_output # 12.0μs -> 9.42μs (27.0% faster)

# 2. Edge Test Cases

def test_zero_width_interval():
    # Integrate any function over [a, a], should be 0
    codeflash_output = numerical_integration_rectangle(lambda x: x**2 + 5, 3, 3, 10); result = codeflash_output # 2.96μs -> 10.2μs (70.9% slower)

def test_single_rectangle():
    # Integrate f(x) = x from 0 to 1 with n=1, should use left endpoint: f(0)*1 = 0
    codeflash_output = numerical_integration_rectangle(lambda x: x, 0, 1, 1); result = codeflash_output # 1.00μs -> 8.21μs (87.8% slower)

def test_two_rectangles():
    # Integrate f(x) = x from 0 to 1 with n=2: h=0.5, f(0)=0, f(0.5)=0.5, so (0+0.5)*0.5=0.25
    codeflash_output = numerical_integration_rectangle(lambda x: x, 0, 1, 2); result = codeflash_output # 1.08μs -> 8.17μs (86.7% slower)



def test_function_with_discontinuity():
    # Integrate f(x) = 1 if x < 0.5 else 2 from 0 to 1, exact result is 0.5*1 + 0.5*2 = 1.5
    def f(x):
        return 1 if x < 0.5 else 2
    codeflash_output = numerical_integration_rectangle(f, 0, 1, 100); result = codeflash_output # 13.2μs -> 20.2μs (34.8% slower)

def test_function_with_singularity():
    # Integrate f(x) = 1/(x+1) from 0 to 1, exact result is ln(2) ~ 0.6931
    codeflash_output = numerical_integration_rectangle(lambda x: 1/(x+1), 0, 1, 100); result = codeflash_output # 15.8μs -> 11.1μs (42.3% faster)

def test_function_negative_values():
    # Integrate f(x) = -x from 0 to 1, exact result is -0.5
    codeflash_output = numerical_integration_rectangle(lambda x: -x, 0, 1, 100); result = codeflash_output # 10.5μs -> 9.38μs (12.4% faster)

def test_function_with_large_and_small_values():
    # Integrate f(x) = 1e6*x from 0 to 1, exact result is 5e5
    codeflash_output = numerical_integration_rectangle(lambda x: 1e6*x, 0, 1, 100); result = codeflash_output # 10.5μs -> 9.38μs (11.6% faster)

def test_function_with_non_integer_bounds():
    # Integrate f(x) = x from 1.5 to 3.5, exact result is (3.5^2 - 1.5^2)/2 = (12.25-2.25)/2 = 5.0
    codeflash_output = numerical_integration_rectangle(lambda x: x, 1.5, 3.5, 100); result = codeflash_output # 8.75μs -> 8.50μs (2.94% faster)

# 3. Large Scale Test Cases

def test_large_n_accuracy_linear():
    # Integrate f(x) = x from 0 to 1, n=1000, should be very accurate
    codeflash_output = numerical_integration_rectangle(lambda x: x, 0, 1, 1000); result = codeflash_output # 91.9μs -> 10.6μs (768% faster)

def test_large_n_accuracy_quadratic():
    # Integrate f(x) = x^2 from 0 to 1, n=1000, should be very accurate
    codeflash_output = numerical_integration_rectangle(lambda x: x**2, 0, 1, 1000); result = codeflash_output # 130μs -> 11.5μs (1031% faster)

def test_large_scale_performance():
    # Integrate f(x) = sin(x) from 0 to pi, exact result is 2
    codeflash_output = numerical_integration_rectangle(math.sin, 0, math.pi, 1000); result = codeflash_output # 91.3μs -> 98.5μs (7.28% slower)

def test_large_scale_nontrivial_function():
    # Integrate f(x) = x*sin(x) from 0 to pi, exact result is pi
    def f(x):
        return x * math.sin(x)
    codeflash_output = numerical_integration_rectangle(f, 0, math.pi, 1000); result = codeflash_output # 118μs -> 125μs (5.25% slower)

def test_large_scale_negative_bounds():
    # Integrate f(x) = x from -500 to 500, should be 0
    codeflash_output = numerical_integration_rectangle(lambda x: x, -500, 500, 1000); result = codeflash_output # 92.5μs -> 10.9μs (750% faster)

def test_large_scale_constant_function():
    # Integrate f(x) = 42 from 0 to 999, result should be 42*999
    codeflash_output = numerical_integration_rectangle(lambda x: 42, 0, 999, 999); result = codeflash_output # 115μs -> 14.2μs (713% faster)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

import math  # used for test functions like sin, cos, exp
# function to test
from typing import Callable

# imports
import pytest  # used for our unit tests
from src.numpy_pandas.numerical_methods import numerical_integration_rectangle

# unit tests

# --------------------------
# Basic Test Cases
# --------------------------

def test_constant_function():
    # Integral of f(x) = 5 over [0, 2] should be 10
    codeflash_output = numerical_integration_rectangle(lambda x: 5, 0, 2, 100); result = codeflash_output # 12.3μs -> 11.8μs (4.96% faster)

def test_linear_function():
    # Integral of f(x) = x over [0, 1] should be 0.5
    codeflash_output = numerical_integration_rectangle(lambda x: x, 0, 1, 100); result = codeflash_output # 12.0μs -> 8.62μs (38.6% faster)

def test_quadratic_function():
    # Integral of f(x) = x^2 over [0, 1] should be 1/3 ≈ 0.333...
    codeflash_output = numerical_integration_rectangle(lambda x: x**2, 0, 1, 100); result = codeflash_output # 16.0μs -> 9.12μs (75.3% faster)

def test_negative_bounds():
    # Integral of f(x) = x over [-1, 1] should be 0
    codeflash_output = numerical_integration_rectangle(lambda x: x, -1, 1, 100); result = codeflash_output # 10.7μs -> 8.33μs (28.5% faster)

def test_reverse_bounds():
    # Should handle a > b by swapping bounds
    # Integral of f(x) = x over [1, 0] should be -0.5
    codeflash_output = numerical_integration_rectangle(lambda x: x, 1, 0, 100); result = codeflash_output # 10.8μs -> 8.38μs (29.3% faster)

def test_function_with_math_exp():
    # Integral of f(x) = exp(x) over [0, 1] is e - 1
    codeflash_output = numerical_integration_rectangle(math.exp, 0, 1, 100); result = codeflash_output # 11.5μs -> 14.3μs (20.1% slower)
    expected = math.e - 1

def test_function_with_math_sin():
    # Integral of f(x) = sin(x) over [0, pi] is 2
    codeflash_output = numerical_integration_rectangle(math.sin, 0, math.pi, 100); result = codeflash_output # 11.1μs -> 14.2μs (21.9% slower)

# --------------------------
# Edge Test Cases
# --------------------------

def test_zero_width_interval():
    # Integral over zero-width interval should be zero
    codeflash_output = numerical_integration_rectangle(lambda x: x**2, 2, 2, 10); result = codeflash_output # 2.83μs -> 9.17μs (69.1% slower)

def test_one_rectangle():
    # With n=1, rectangle rule is just f(a)*(b-a)
    codeflash_output = numerical_integration_rectangle(lambda x: x, 0, 2, 1); result = codeflash_output # 1.00μs -> 8.25μs (87.9% slower)



def test_function_with_discontinuity():
    # Integrate sign function over [-1, 1]
    def sign(x):
        return 1 if x >= 0 else -1
    codeflash_output = numerical_integration_rectangle(sign, -1, 1, 100); result = codeflash_output # 14.5μs -> 21.8μs (33.5% slower)

def test_function_with_large_values():
    # Integrate f(x) = 1e6*x over [0, 1]
    codeflash_output = numerical_integration_rectangle(lambda x: 1e6 * x, 0, 1, 100); result = codeflash_output # 11.9μs -> 9.79μs (21.7% faster)

def test_function_with_small_values():
    # Integrate f(x) = 1e-6*x over [0, 1]
    codeflash_output = numerical_integration_rectangle(lambda x: 1e-6 * x, 0, 1, 100); result = codeflash_output # 11.1μs -> 9.38μs (18.2% faster)

def test_function_with_very_small_interval():
    # Integrate f(x) = x over [0, 1e-8]
    codeflash_output = numerical_integration_rectangle(lambda x: x, 0, 1e-8, 10); result = codeflash_output # 2.46μs -> 8.62μs (71.5% slower)

def test_function_with_infinite_result():
    # Integrate f(x) = 1/x over [1, 2]
    codeflash_output = numerical_integration_rectangle(lambda x: 1/x, 1, 2, 100); result = codeflash_output # 13.5μs -> 9.50μs (42.5% faster)

def test_function_with_non_numeric_return_raises():
    # If f returns non-numeric, should raise TypeError
    def bad_func(x):
        return "not a number"
    with pytest.raises(TypeError):
        numerical_integration_rectangle(bad_func, 0, 1, 10)

# --------------------------
# Large Scale Test Cases
# --------------------------

def test_large_n_linear_function():
    # Test with large n for f(x) = x over [0, 1]
    codeflash_output = numerical_integration_rectangle(lambda x: x, 0, 1, 1000); result = codeflash_output # 92.0μs -> 10.8μs (750% faster)

def test_large_n_quadratic_function():
    # Test with large n for f(x) = x^2 over [0, 1]
    codeflash_output = numerical_integration_rectangle(lambda x: x**2, 0, 1, 1000); result = codeflash_output # 130μs -> 11.7μs (1022% faster)

def test_large_interval():
    # Integrate f(x) = x over [0, 1000] with 1000 rectangles
    codeflash_output = numerical_integration_rectangle(lambda x: x, 0, 1000, 1000); result = codeflash_output # 92.5μs -> 10.5μs (777% faster)

def test_large_n_step_function():
    # Integrate a step function over [0, 1]
    def step(x):
        return 1 if x > 0.5 else 0
    codeflash_output = numerical_integration_rectangle(step, 0, 1, 1000); result = codeflash_output # 120μs -> 129μs (7.24% slower)

def test_large_n_sin_function():
    # Integrate sin(x) over [0, 2*pi] with large n
    codeflash_output = numerical_integration_rectangle(math.sin, 0, 2 * math.pi, 1000); result = codeflash_output # 93.6μs -> 122μs (23.3% slower)

def test_large_n_exp_function():
    # Integrate exp(x) over [0, 10] with large n
    codeflash_output = numerical_integration_rectangle(math.exp, 0, 10, 1000); result = codeflash_output # 87.8μs -> 94.2μs (6.77% slower)
    # Exact integral is exp(10) - 1
    expected = math.exp(10) - 1
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

from src.numpy_pandas.numerical_methods import numerical_integration_rectangle

def test_numerical_integration_rectangle():
    numerical_integration_rectangle(lambda *a: 0.5, float('inf'), 0.0, 1)

To edit these changes git checkout codeflash/optimize-numerical_integration_rectangle-mc5fsdpy and push.

Codeflash

Here are the main bottlenecks per your profiling.

- `result += f(x)` is very slow: calling a Python function is expensive in tight loops
- `x = a + i * h` is next
- The Python loop itself (`for i in range(n)`) adds overhead

**Optimization strategies:**

- Use numpy for vectorization where possible, which can calculate all points in one go and sum them, greatly reducing Python-level looping/overhead. Numpy will only help if the `f` function can work on arrays, but we can provide a fast path and fall back otherwise.
- Otherwise, use `functools.lru_cache` to cache repeated calls if `f` is expensive and pure, but often this helps only for certain functions. 
- `a + i*h` can be replaced with a precomputed numpy array of `x` values.

Here's a rewritten version that will be much faster for `f` functions that accept numpy arrays, but will still work with all standard Python callables (falling back to the original loop).



**Explanation:**  
- If `f` is numpy-aware (works with numpy arrays), the whole integration will run in compiled code (very fast).
- Otherwise, it falls back to your original code path with a minor optimization—unpacking `a + i * h` is already cheap.
- No lost precision or semantic change.
- Works for all input functions and preserves all existing comments and function signatures.

**Note:**  
If you are not allowed to use numpy (or want to further speed up for "slow" pure-Python functions), consider using Cython or numba. But for pure Python, numpy vectorization gives you the biggest, simplest speedup.
@codeflash-ai codeflash-ai bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label Jun 20, 2025
@codeflash-ai codeflash-ai bot requested a review from KRRT7 June 20, 2025 23:24
@KRRT7 KRRT7 closed this Jun 23, 2025
@codeflash-ai codeflash-ai bot deleted the codeflash/optimize-numerical_integration_rectangle-mc5fsdpy branch June 23, 2025 23:30
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
⚡️ codeflash Optimization PR opened by Codeflash AI
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant