Skip to content
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
55 changes: 55 additions & 0 deletions examples/sec_emotioncaps/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,55 @@
# Speech Emotion Caption

## Model Architecture

This recipe generates high-quality, human-like speech emotion descriptions. The model is based on the **q-former projector** and the **vicuna-7b-v1.5 LLM**. The model is trained on **an unpublished datasets** dataset, which is a large-scale dataset for speech emotion captioning.

![](docs/model.png)

## Performance and checkpoints

We only train the q-former projector in this recipe.

Encoder | Projector | LLM | Similarity Score
---|---|---|---
[emotion2vec_base](https://huggingface.co/emotion2vec/emotion2vec_base) | [Q-Former](to_do)| [vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) | 71.10

> **Note**: The baseline model [SECap](https://github.com/thuhcsi/SECap) was tested in our environment and achieved a similarity score of 71.52. Our model's score is slightly lower.

## Data preparation
You need to prepare the data jsonl in this format.

```
{"key": "key_name", "source": "path_to_wav_file", "target": "corresponding_caption"}
...
```


## Decode with checkpoints

```
bash decode_emotion2vec_qformer_vicuna_7b.sh
```

Modify the path including `speech_encoder_path`, `llm_path`, `output_dir`, `ckpt_path`, `val_data_path` and `decode_log` in the script when you run the shell script.

## Train a new model

If you do have sufficient relevant data, you can train the model yourself.

```
bash finetune_emotion2vec_qformer_vicuna_7b.sh
```

## Citation

You can refer to the paper for more results.

```
@article{ma2024embarrassingly,
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

please delate this citation information

title={An Embarrassingly Simple Approach for LLM with Strong ASR Capacity},
author={Ma, Ziyang and Yang, Guanrou and Yang, Yifan and Gao, Zhifu and Wang, Jiaming and Du, Zhihao and Yu, Fan and Chen, Qian and Zheng, Siqi and Zhang, Shiliang and others},
journal={arXiv preprint arXiv:2402.08846},
year={2024}
}
```
19 changes: 19 additions & 0 deletions examples/sec_emotioncaps/conf/ds_config.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
{
"train_micro_batch_size_per_gpu": 4,
"gradient_accumulation_steps": 1,
"optimizer": {
"type": "Adam",
"params": {
"lr": 1e-4
}
},
"fp16": {
"enabled": true
},
"zero_optimization": {
"stage": 3,
"offload_optimizer": {
"device": "cpu"
}
}
}
3 changes: 3 additions & 0 deletions examples/sec_emotioncaps/conf/prompt.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
dataset_config:
# we put prompt here, because the hydra override in shell script only support a small subset of chars
prompt: "请用中文用一句话描述上面给出的音频中说话人的情感。"
Binary file added examples/sec_emotioncaps/docs/model.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
49 changes: 49 additions & 0 deletions examples/sec_emotioncaps/finetune_sec.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,49 @@
from slam_llm.pipeline.finetune import main as train

import hydra
import logging
from typing import Optional
from dataclasses import dataclass, field
from omegaconf import DictConfig, ListConfig, OmegaConf
from sec_config import ModelConfig, TrainConfig, DataConfig, LogConfig, FSDPConfig

@dataclass
class RunConfig:
dataset_config: DataConfig = field(default_factory=DataConfig)
model_config: ModelConfig = field(default_factory=ModelConfig)
train_config: TrainConfig = field(default_factory=TrainConfig)
log_config: LogConfig = field(default_factory=LogConfig)
fsdp_config: FSDPConfig = field(default_factory=FSDPConfig)
debug: bool = field(default=False, metadata={"help": "Use pdb when true"})
metric: str = field(default="acc", metadata={"help": "The metric for evaluation"})
ckpt_path: Optional[str] = field(
default=None, metadata={"help": "The path to projector checkpoint"}
)

@hydra.main(config_name=None, version_base=None)
def main_hydra(cfg: DictConfig):
run_config = RunConfig()
cfg = OmegaConf.merge(run_config, cfg)
def to_plain_list(cfg_item):
if isinstance(cfg_item, ListConfig):
return OmegaConf.to_container(cfg_item, resolve=True)
elif isinstance(cfg_item, DictConfig):
return {k: to_plain_list(v) for k, v in cfg_item.items()}
else:
return cfg_item

# kwargs = to_plain_list(cfg)
kwargs = cfg
log_level = getattr(logging, kwargs.get("log_level", "INFO").upper())

logging.basicConfig(level=log_level)

if kwargs.get("debug", False):
import pdb;
pdb.set_trace()

train(kwargs)


if __name__ == "__main__":
main_hydra()
53 changes: 53 additions & 0 deletions examples/sec_emotioncaps/inference_sec_batch.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
from slam_llm.pipeline.inference_batch import main as inference

import hydra
import logging
from dataclasses import dataclass, field
from omegaconf import DictConfig, ListConfig, OmegaConf
from typing import Optional
from sec_config import ModelConfig, TrainConfig, DataConfig, LogConfig, FSDPConfig


@dataclass
class RunConfig:
dataset_config: DataConfig = field(default_factory=DataConfig)
model_config: ModelConfig = field(default_factory=ModelConfig)
train_config: TrainConfig = field(default_factory=TrainConfig)
log_config: LogConfig = field(default_factory=LogConfig)
fsdp_config: FSDPConfig = field(default_factory=FSDPConfig)
debug: bool = field(default=False, metadata={"help": "Use pdb when true"})
metric: str = field(default="acc", metadata={"help": "The metric for evaluation"})
decode_log: str = field(
default="output/decode_log",
metadata={"help": "The prefix for the decode output"},
)
ckpt_path: str = field(
default="output/model.pt", metadata={"help": "The path to projector checkpoint"}
)
peft_ckpt: Optional[str] = field(
default=None,
metadata={
"help": "The path to peft checkpoint, should be a directory including adapter_config.json"
},
)


@hydra.main(config_name=None, version_base=None)
def main_hydra(cfg: DictConfig):
run_config = RunConfig()
cfg = OmegaConf.merge(run_config, cfg)
# kwargs = to_plain_list(cfg)
log_level = getattr(logging, cfg.get("log_level", "INFO").upper())

logging.basicConfig(level=log_level)

if cfg.get("debug", False):
import pdb

pdb.set_trace()

inference(cfg)


if __name__ == "__main__":
main_hydra()
155 changes: 155 additions & 0 deletions examples/sec_emotioncaps/model/slam_model_sec.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,155 @@
import torch
import os
import logging
from slam_llm.models.slam_model import (
slam_model,
setup_tokenizer,
setup_encoder,
setup_encoder_projector,
setup_llm,
)
from slam_llm.utils.train_utils import print_model_size

logger = logging.getLogger(__name__)

def model_factory(train_config, model_config, **kwargs):
# return necessary components for training
tokenizer = setup_tokenizer(train_config, model_config, **kwargs)

encoder = setup_encoder(train_config, model_config, **kwargs)

# llm
llm = setup_llm(train_config, model_config, **kwargs)

# projector
encoder_projector = setup_encoder_projector(
train_config, model_config, **kwargs
)
model = slam_model_asr(
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

please rename the model name

encoder,
llm,
encoder_projector,
tokenizer,
train_config,
model_config,
**kwargs,
)

ckpt_path = kwargs.get(
"ckpt_path", None
) # FIX(MZY): load model ckpt(mainly projector, related to model_checkpointing/checkpoint_handler.py: save_model_checkpoint_peft)
if ckpt_path is not None:
logger.info("loading other parts from: {}".format(ckpt_path))
ckpt_dict = torch.load(ckpt_path, map_location="cpu")
model.load_state_dict(ckpt_dict, strict=False)

print_model_size(
model,
train_config,
(
int(os.environ["RANK"])
if train_config.enable_fsdp or train_config.enable_ddp
else 0
),
)
return model, tokenizer


class slam_model_asr(slam_model):
def __init__(
self,
encoder,
llm,
encoder_projector,
tokenizer,
train_config,
model_config,
**kwargs,
):
super().__init__(
encoder,
llm,
encoder_projector,
tokenizer,
train_config,
model_config,
**kwargs,
)


@torch.no_grad()
def inference(
self,
wav_path=None,
prompt=None,
generation_config=None,
logits_processor=None,
stopping_criteria=None,
prefix_allowed_tokens_fn=None,
synced_gpus=None,
assistant_model=None,
streamer=None,
negative_prompt_ids=None,
negative_prompt_attention_mask=None,
**kwargs,
):
# inference for asr model

device = kwargs.get("device", "cuda")
if os.path.exists(wav_path): # Audio-Text QA
import whisper

audio_raw = whisper.load_audio(wav_path)
audio_raw = whisper.pad_or_trim(audio_raw)

mel_size = getattr(
self.dataset_config, "mel_size", 80
) # 80 for large v1 and v2, 128 for large v3
audio_mel = (
whisper.log_mel_spectrogram(audio_raw, n_mels=mel_size)
.permute(1, 0)[None, :, :]
.to(device)
)

encoder_outs = self.encoder.extract_variable_length_features(
audio_mel.permute(0, 2, 1)
)

if self.model_config.encoder_projector == "q-former":
audio_mel_post_mask = torch.ones(
encoder_outs.size()[:-1], dtype=torch.long
).to(encoder_outs.device)
encoder_outs = self.encoder_projector(encoder_outs, audio_mel_post_mask)
if self.model_config.encoder_projector == "linear":
encoder_outs = self.encoder_projector(encoder_outs)
else: # Text QA
encoder_outs = torch.empty(
1, 0, self.llm.model.embed_tokens.embedding_dim
).to(device)

prompt = "USER: {}\n ASSISTANT:".format(prompt)
prompt_ids = self.tokenizer.encode(prompt)
prompt_length = len(prompt_ids)
prompt_ids = torch.tensor(prompt_ids, dtype=torch.int64).to(device)

if hasattr(self.llm.model, "embed_tokens"):
inputs_embeds = self.llm.model.embed_tokens(prompt_ids)
elif hasattr(self.llm.model.model, "embed_tokens"):
inputs_embeds = self.llm.model.model.embed_tokens(prompt_ids)
else:
inputs_embeds = self.llm.model.model.model.embed_tokens(prompt_ids)

inputs_embeds = torch.cat(
(encoder_outs, inputs_embeds[None, :, :]), dim=1
) # [audio,prompt]

attention_mask = torch.ones(inputs_embeds.size()[:-1], dtype=torch.long).to(
inputs_embeds.device
)

# generate
model_outputs = self.generate(
inputs_embeds=inputs_embeds, attention_mask=attention_mask, **kwargs
)

return model_outputs
Loading
Loading