Skip to content

WUR-AI/NUE_PCSE-Gym

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

This repository contains an extended version of CropGym; the code used in the paper "Adaptive fertilizer management for optimizing nitrogen use efficiency with constrained reinforcement learning".

How to install:

Requires python 3.9+

  1. Clone the PCSE repo and install
  2. Clone this repo
  3. Download this file and put the .csv file under the folder pcse_gym/utils/weather_utils/random_weather_csv/ (create the non-existing folders). It is the generated random weather used to train the RL agents.
  4. Install stable-baselines3, sb3contrib, scipy, lib_programname, rllte-core and tqdm with pip

How to use:

Example to train a model using the NUE reward function with the LagrangianPPO agent and the E3B intrinsic reward:

python train_winterwheat.py --reward NUE --environment 2 --agent LagPPO --seed 4 --nsteps 3000000 --random-weather --random-init --irs E3B

Citation

If you find our work useful, please consider citing our work.

@article{baja2025nue,
  title={Adaptive fertilizer management for optimizing nitrogen use efficiency with constrained reinforcement learning},
  author={Baja, Hilmy and Kallenberg, Michiel GJ and Berghuijs, Herman NC and Athanasiadis, Ioannis N},
  journal={Computers and Electronics in Agriculture},
  volume={237},
  pages={110554},
  year={2025},
  publisher={Elsevier},
  doi={10.1016/j.compag.2025.110554},
}

Acknowledgements

This work was done as part of the EU Horizon project, Smart Droplets.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages