Skip to content
Merged
Show file tree
Hide file tree
Changes from 16 commits
Commits
Show all changes
23 commits
Select commit Hold shift + click to select a range
9dd9fbc
schema_v1-dataset_builder-add_dimension
dmitriyrepin Jun 24, 2025
f88531e
Merge remote-tracking branch 'upstream/v1' into v1
dmitriyrepin Jun 26, 2025
1358f95
First take on add_dimension(), add_coordinate(), add_variable()
dmitriyrepin Jun 27, 2025
e5261cb
Finished add_dimension, add_coordinate, add_variable
dmitriyrepin Jun 28, 2025
95c01d8
Work on build
dmitriyrepin Jun 30, 2025
46f82f0
Generalize _to_dictionary()
dmitriyrepin Jul 1, 2025
0dc7cc8
build
dmitriyrepin Jul 1, 2025
79863ac
Dataset Build - pass one
dmitriyrepin Jul 2, 2025
ec480f1
Merge the latest TGSAI/mdio-python:v1 branch
dmitriyrepin Jul 2, 2025
fa81ea2
Merge branch 'v1' into v1
tasansal Jul 7, 2025
4b2b163
Revert .container changes
dmitriyrepin Jul 7, 2025
c532c3b
PR review: remove DEVELOPER_NOTES.md
dmitriyrepin Jul 7, 2025
08798cd
PR Review: add_coordinate() should accept only data_type: ScalarType
dmitriyrepin Jul 7, 2025
e8febe4
PR review: add_variable() data_type remove default
dmitriyrepin Jul 7, 2025
0a4be3f
RE review: do not add dimension variable
dmitriyrepin Jul 8, 2025
7b25d6b
PR Review: get api version from the package version
dmitriyrepin Jul 8, 2025
7ca3ed8
PR Review: remove add_dimension_coordinate
dmitriyrepin Jul 9, 2025
4d1ec9c
PR Review: add_coordinate() remove data_type default value
dmitriyrepin Jul 9, 2025
99fcf43
PR Review: improve unit tests by extracting common functionality in v…
dmitriyrepin Jul 9, 2025
0778fdd
Remove the Dockerfile changes. They are not supposed to be a part of …
dmitriyrepin Jul 9, 2025
7e74567
PR Review: run ruff
dmitriyrepin Jul 9, 2025
0aaa5f6
PR Review: fix pre-commit errors
dmitriyrepin Jul 10, 2025
1904dee
remove some noqa overrides
tasansal Jul 10, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
365 changes: 365 additions & 0 deletions src/mdio/schemas/v1/dataset_builder.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,365 @@
"""Builder pattern implementation for MDIO v1 schema models."""

from datetime import UTC
from datetime import datetime
from enum import Enum
from enum import auto
from typing import Any
from typing import TypeAlias
from importlib import metadata

from pydantic import BaseModel
from zarr.core.chunk_key_encodings import V2ChunkKeyEncoding # noqa: F401

from mdio.schemas.compressors import ZFP
from mdio.schemas.compressors import Blosc
from mdio.schemas.dimension import NamedDimension
from mdio.schemas.dtype import ScalarType
from mdio.schemas.dtype import StructuredType
from mdio.schemas.metadata import ChunkGridMetadata
from mdio.schemas.metadata import UserAttributes
from mdio.schemas.v1.dataset import Dataset, DatasetMetadata
from mdio.schemas.v1.dataset import DatasetInfo
from mdio.schemas.v1.stats import StatisticsMetadata
from mdio.schemas.v1.units import AllUnits
from mdio.schemas.v1.variable import Coordinate
from mdio.schemas.v1.variable import Variable

AnyMetadataList: TypeAlias = list[AllUnits |
UserAttributes |
ChunkGridMetadata |
StatisticsMetadata |
DatasetInfo]
CoordinateMetadataList: TypeAlias = list[AllUnits | UserAttributes]
VariableMetadataList: TypeAlias = list[AllUnits |
UserAttributes |
ChunkGridMetadata |
StatisticsMetadata]
DatasetMetadataList: TypeAlias = list[DatasetInfo | UserAttributes]


class _BuilderState(Enum):
"""States for the template builder."""

INITIAL = auto()
HAS_DIMENSIONS = auto()
HAS_COORDINATES = auto()
HAS_VARIABLES = auto()


def _get_named_dimension(
dimensions: list[NamedDimension], name: str, size: int | None = None
) -> NamedDimension | None:
"""Get a dimension by name and optional size from the list[NamedDimension]."""
if dimensions is None:
return False
if not isinstance(name, str):
msg = f"Expected str, got {type(name).__name__}"
raise TypeError(msg)

nd = next((dim for dim in dimensions if dim.name == name), None)
if nd is None:
return None
if size is not None and nd.size != size:
msg = f"Dimension {name!r} found but size {nd.size} does not match expected size {size}"
raise ValueError(msg)
return nd


def _to_dictionary(val: BaseModel | dict[str, Any] | AnyMetadataList) -> dict[str, Any]:
"""Convert a dictionary, list or pydantic BaseModel to a dictionary."""
if val is None:
return None
if isinstance(val, BaseModel):
return val.model_dump(mode="json", by_alias=True)
if isinstance(val, dict):
return val
if isinstance(val, list):
metadata_dict = {}
for md in val:
if md is None:
continue
metadata_dict.update(_to_dictionary(md))
return metadata_dict
msg = f"Expected BaseModel, dict or list, got {type(val).__name__}"
raise TypeError(msg)


class MDIODatasetBuilder:
"""Builder for creating MDIO datasets with enforced build order.

This builder implements the builder pattern to create MDIO datasets with a v1 schema.
It enforces a specific build order to ensure valid dataset construction:
1. Must add dimensions first via add_dimension()
2. Can optionally add coordinates via add_coordinate()
3. Must add variables via add_variable()
4. Must call build() to create the dataset.
"""

def __init__(self, name: str, attributes: UserAttributes | None = None):

try:
api_version = metadata.version("multidimio")
except metadata.PackageNotFoundError:
api_version = "unknown"

self._info = DatasetInfo(
name=name,
api_version=api_version,
created_on=datetime.now(UTC)
)
self._attributes = attributes
self._dimensions: list[NamedDimension] = []
self._coordinates: list[Coordinate] = []
self._variables: list[Variable] = []
self._state = _BuilderState.INITIAL
self._unnamed_variable_counter = 0

def add_dimension( # noqa: PLR0913
self,
name: str,
size: int
) -> "MDIODatasetBuilder":
"""Add a dimension.

This function be called at least once before adding coordinates or variables.

Args:
name: Name of the dimension
size: Size of the dimension

Returns:
self: Returns self for method chaining
"""
if not name:
msg = "'name' must be a non-empty string"
raise ValueError(msg)

# Validate that the dimension is not already defined
old_var = next((e for e in self._dimensions if e.name == name), None)
if old_var is not None:
msg = "Adding dimension with the same name twice is not allowed"
raise ValueError(msg)

dim = NamedDimension(name=name, size=size)
self._dimensions.append(dim)
self._state = _BuilderState.HAS_DIMENSIONS
return self

def _get_coordinate(
self,
coordinates: list[Coordinate] | list[str],
name: str, size: int | None = None
) -> Coordinate | None:
"""Get a coordinate by name from the list[Coordinate] | list[str]."""
if coordinates is None:
return None

for c in coordinates:
if isinstance(c, str) and c == name:
# The coordinate is stored by name (str).
# Find it in the builder global list and return it.
cc = next((v for v in self._coordinates if v.name == name), None)
if cc is None:
msg = f"Pre-existing coordinate named {name!r} is not found"
raise ValueError(msg)
return cc
if isinstance(c, Coordinate) and c.name == name:
# The coordinate is stored as an embedded Coordinate object.
# Return it.
return c

return None

def add_coordinate( # noqa: PLR0913
self,
name: str,
*,
long_name: str = None,
dimensions: list[str],
data_type: ScalarType = ScalarType.FLOAT32,
compressor: Blosc | ZFP | None = None,
metadata_info: CoordinateMetadataList | None = None,
) -> "MDIODatasetBuilder":
"""Add a coordinate after adding at least one dimension.

This function must be called after all required dimensions are added via add_dimension().
This call will create a coordinate variable.

Args:
name: Name of the coordinate
long_name: Optional long name for the coordinate
dimensions: List of dimension names that the coordinate is associated with
data_type: Data type for the coordinate (defaults to FLOAT32)
metadata_info: Optional metadata information for the coordinate

Returns:
self: Returns self for method chaining
"""
if self._state == _BuilderState.INITIAL:
msg = "Must add at least one dimension before adding coordinates"
raise ValueError(msg)
if not name:
msg = "'name' must be a non-empty string"
raise ValueError(msg)
if dimensions is None or not dimensions:
msg = "'dimensions' must be a non-empty list"
raise ValueError(msg)
old_var = next((e for e in self._coordinates if e.name == name), None)
# Validate that the coordinate is not already defined
if old_var is not None:
msg = "Adding coordinate with the same name twice is not allowed"
raise ValueError(msg)

# Validate that all referenced dimensions are already defined
named_dimensions = []
for dim_name in dimensions:
nd = _get_named_dimension(self._dimensions, dim_name)
if nd is None:
msg = f"Pre-existing dimension named {dim_name!r} is not found"
raise ValueError(msg)
named_dimensions.append(nd)

meta_dict = _to_dictionary(metadata_info)
coord = Coordinate(
name=name,
longName=long_name,
dimensions=named_dimensions,
compressor=compressor,
dataType=data_type,
metadata=meta_dict
)
self._coordinates.append(coord)

# Add a coordinate variable to the dataset
self.add_variable(
name=coord.name,
long_name=f"'{coord.name}' coordinate variable",
dimensions=dimensions, # dimension names (list[str])
data_type=coord.data_type,
compressor=compressor,
coordinates=[name], # Use the coordinate name as a reference
metadata_info=coord.metadata
)

self._state = _BuilderState.HAS_COORDINATES
return self

def add_dimension_coordinate(
self,
dimension_name: str,
*,
data_type: ScalarType,
compressor: Blosc | ZFP | None = None,
metadata_info: VariableMetadataList | None = None,
) -> "MDIODatasetBuilder":
"""Add a dimension coordinate variable for a pre-existing dimension.
This is a convenience method to create a coordinate variable
that represents sampling along a dimension.

The dimension coordinate is a coordinate that has a single dimension and
the name of the coordinate is the same as the name of the dimension
"""
self.add_coordinate(dimension_name,
long_name=dimension_name,
dimensions=[dimension_name],
data_type=data_type,
compressor=compressor,
metadata_info=_to_dictionary(metadata_info))

return self

def add_variable( # noqa: PLR0913
self,
name: str,
*,
long_name: str = None,
dimensions: list[str],
data_type: ScalarType | StructuredType,
compressor: Blosc | ZFP | None = None,
coordinates: list[str] | None = None,
metadata_info: VariableMetadataList | None = None,
) -> "MDIODatasetBuilder":
"""Add a variable after adding at least one dimension and, optionally, coordinate.

This function must be called after all required dimensions are added via add_dimension()
This function must be called after all required coordinates are added via add_coordinate().

If this function is called with a single dimension name that matches the variable name,
it will create a dimension variable. Dimension variables are special variables that
represent sampling along a dimension.

Args:
name: Name of the variable
long_name: Optional long name for the variable
dimensions: List of dimension names that the variable is associated with
data_type: Data type for the variable (defaults to FLOAT32)
compressor: Compressor used for the variable (defaults to None)
coordinates: List of coordinate names that the variable is associated with
(defaults to None, meaning no coordinates)
metadata_info: Optional metadata information for the variable

Returns:
self: Returns self for method chaining.
"""
if self._state == _BuilderState.INITIAL:
msg = "Must add at least one dimension before adding variables"
raise ValueError(msg)
if not name:
msg = "'name' must be a non-empty string"
raise ValueError(msg)
if dimensions is None or not dimensions:
msg = "'dimensions' must be a non-empty list"
raise ValueError(msg)

# Validate that the variable is not already defined
old_var = next((e for e in self._variables if e.name == name), None)
if old_var is not None:
msg = "Adding variable with the same name twice is not allowed"
raise ValueError(msg)

# Validate that all referenced dimensions are already defined
named_dimensions = []
for dim_name in dimensions:
nd = _get_named_dimension(self._dimensions, dim_name)
if nd is None:
msg = f"Pre-existing dimension named {dim_name!r} is not found"
raise ValueError(msg)
named_dimensions.append(nd)

# Validate that all referenced coordinates are already defined
if coordinates is not None:
for coord in coordinates:
if next((c for c in self._coordinates if c.name == coord), None) is None:
msg = f"Pre-existing coordinate named {coord!r} is not found"
raise ValueError(msg)

meta_dict = _to_dictionary(metadata_info)
var = Variable(
name=name,
long_name=long_name,
dimensions=named_dimensions,
data_type=data_type,
compressor=compressor,
coordinates=coordinates,
metadata=meta_dict)
self._variables.append(var)

self._state = _BuilderState.HAS_VARIABLES
return self

def build(self) -> Dataset:
"""Build the final dataset.

This function must be called after at least one dimension is added via add_dimension().
It will create a Dataset object with all added dimensions, coordinates, and variables.

Returns:
Dataset: The built dataset with all added dimensions, coordinates, and variables.
"""
if self._state == _BuilderState.INITIAL:
msg = "Must add at least one dimension before building"
raise ValueError(msg)

var_meta_dict = _to_dictionary([self._info, self._attributes])
return Dataset(variables=self._variables, metadata=var_meta_dict)
1 change: 1 addition & 0 deletions tests/unit/v1/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
"""Unit tests for parts of the MDIO package related to the v1 schema."""
Loading