| Status | Coverage |
|---|---|
a module to visualise attention layer activations from transformer based models from huggingface
pip install git+https://github.com/ShawonAshraf/attention-visualiserfrom visualiser import AttentionVisualiser
from transformers import AutoModel, AutoTokenizer
# visualising activations from gpt
model_name = "openai-community/openai-gpt"
model = AutoModel.from_pretrained(model_name)
model.eval()
tokenizer = AutoTokenizer.from_pretrained(model_name)
text = "Look on my Works, ye Mighty, and despair!"
encoded_inputs = tokenizer.encode_plus(text, truncation=True, return_tensors="pt")
visualiser = AttentionVisualiser(model, tokenizer)
# visualise from the first attn layer
visualiser.visualise_attn_layer(0, encoded_inputs)# env setup
uv sync
source .venv/bin/activate
# tests
uv run pytest
# tests with coverage
uv run pytest --cov --cov-report=xmlalternatively, you can use the devcontainer.