Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions src/text/cct.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
import torch.nn as nn
from ..utils.transformers import MaskedTransformerClassifier
from ..utils.tokenizer import TextTokenizer
from ..utils.tokenizer import TextTokenizer1D
from ..utils.embedder import Embedder

__all__ = [
Expand All @@ -27,7 +27,7 @@ def __init__(self,
self.embedder = Embedder(word_embedding_dim=word_embedding_dim,
*args, **kwargs)

self.tokenizer = TextTokenizer(n_input_channels=word_embedding_dim,
self.tokenizer = TextTokenizer1D(n_input_channels=word_embedding_dim,
n_output_channels=embedding_dim,
kernel_size=kernel_size,
stride=stride,
Expand Down
63 changes: 63 additions & 0 deletions src/utils/tokenizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -109,3 +109,66 @@ def forward(self, x, mask=None):
def init_weight(m):
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight)


class TextTokenizer1D(nn.Module):
def __init__(self,
kernel_size, stride, padding,
pooling_kernel_size=3, pooling_stride=2, pooling_padding=1,
embedding_dim=300,
n_output_channels=128,
activation=None,
max_pool=True,
*args, **kwargs):

super(TextTokenizer1D, self).__init__()

self.max_pool = max_pool
self.conv_layers = nn.Sequential(
nn.Conv1d(in_channels=embedding_dim, out_channels=n_output_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding, bias=False),
nn.Identity() if activation is None else activation(),
nn.MaxPool1d(
kernel_size=pooling_kernel_size,
stride=pooling_stride,
padding=pooling_padding
) if max_pool else nn.Identity()
)

self.apply(self.init_weight)

def seq_len(self, seq_len=32, embed_dim=300):
return self.forward(torch.zeros((1, seq_len, embed_dim)))[0].shape[1]

def forward_mask(self, mask):
new_mask = mask.unsqueeze(1).float()
cnn_weight = torch.ones(
(1, 1, self.conv_layers[0].kernel_size[0]),
device=mask.device,
dtype=torch.float)
new_mask = F.conv1d(
new_mask, cnn_weight, None,
self.conv_layers[0].stride[0], self.conv_layers[0].padding[0], 1, 1)
if self.max_pool:
new_mask = F.max_pool1d(
new_mask, self.conv_layers[2].kernel_size[0],
self.conv_layers[2].stride[0], self.conv_layers[2].padding[0], 1, False, False)
new_mask = new_mask.squeeze(1)
new_mask = (new_mask > 0)
return new_mask

def forward(self, x, mask=None):
x = self.conv_layers(x.transpose(1,2))
x = x.transpose(1, 2)
x = x if mask is None else x * self.forward_mask(mask).unsqueeze(-1).float()
if mask is not None:
mask = self.forward_mask(mask).unsqueeze(-1).float()
x = x * mask
return x, mask

@staticmethod
def init_weight(m):
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight)