|
| 1 | +\documentclass{article} |
| 2 | + |
| 3 | +\usepackage[english]{babel} |
| 4 | +\usepackage[utf8]{inputenc} |
| 5 | +\usepackage{polski} |
| 6 | +\usepackage[T1]{fontenc} |
| 7 | + |
| 8 | +\usepackage[margin=1.5in]{geometry} |
| 9 | + |
| 10 | +\usepackage{color} |
| 11 | +\usepackage{amsmath} |
| 12 | +\usepackage{amsfonts} |
| 13 | +\usepackage{graphicx} |
| 14 | +\usepackage{booktabs} |
| 15 | +\usepackage{amsthm} |
| 16 | +\usepackage{pdfpages} |
| 17 | +\usepackage{wrapfig} |
| 18 | +\usepackage{hyperref} |
| 19 | +\usepackage{etoolbox} |
| 20 | + |
| 21 | +\makeatletter |
| 22 | +\newenvironment{definition}[1]{% |
| 23 | + \trivlist |
| 24 | + \item[\hskip\labelsep\textbf{Definition. #1.}] |
| 25 | + \ignorespaces |
| 26 | +}{% |
| 27 | + \endtrivlist |
| 28 | +} |
| 29 | +\newenvironment{fact}[1]{% |
| 30 | + \trivlist |
| 31 | + \item[\hskip\labelsep\textbf{Fact. #1.}] |
| 32 | + \ignorespaces |
| 33 | +}{% |
| 34 | + \endtrivlist |
| 35 | +} |
| 36 | +\newenvironment{theorem}[1]{% |
| 37 | + \trivlist |
| 38 | + \item[\hskip\labelsep\textbf{Theorem. #1.}] |
| 39 | + \ignorespaces |
| 40 | +}{% |
| 41 | + \endtrivlist |
| 42 | +} |
| 43 | +\newenvironment{information}[1]{% |
| 44 | + \trivlist |
| 45 | + \item[\hskip\labelsep\textbf{Information. #1.}] |
| 46 | + \ignorespaces |
| 47 | +}{% |
| 48 | + \endtrivlist |
| 49 | +} |
| 50 | +\newenvironment{identities}[1]{% |
| 51 | + \trivlist |
| 52 | + \item[\hskip\labelsep\textbf{Identities. #1.}] |
| 53 | + \ignorespaces |
| 54 | +}{% |
| 55 | + \endtrivlist |
| 56 | +} |
| 57 | +\makeatother |
| 58 | + |
| 59 | +\title{Abstract algebra and coding} |
| 60 | +\author{Rafał Włodarczyk} |
| 61 | +\date{INA 2, 2024} |
| 62 | + |
| 63 | +\begin{document} |
| 64 | + |
| 65 | +\maketitle |
| 66 | + |
| 67 | +\tableofcontents |
| 68 | + |
| 69 | +\section{Definitions} |
| 70 | + |
| 71 | +\subsection{Group} |
| 72 | + |
| 73 | +A group is a set \( G \) along with an operation \( \cdot \) satisfying the following axioms: |
| 74 | +\begin{enumerate} |
| 75 | + \item \textbf{Operation is defined}: \( \forall a, b \in G: a \cdot b \in G \) |
| 76 | + \item \textbf{Operation is associative}: \( \forall a, b, c \in G: a \cdot (b \cdot c) = (a \cdot b) \cdot c \) |
| 77 | + \item \textbf{Identity element exists}: \( \exists e \in G: \forall a \in G: a \cdot e = e \cdot a = a \) |
| 78 | + \item \textbf{Inverse element exists}: \( \forall a \in G: \exists a^{-1} \in G: a \cdot a^{-1} = a^{-1} \cdot a = e \) |
| 79 | +\end{enumerate} |
| 80 | + |
| 81 | +\subsection{Subgroup} |
| 82 | + |
| 83 | +A subset \( H \) of a group \( G \) is a subgroup if: |
| 84 | +\begin{enumerate} |
| 85 | + \item \( H \) is closed under the operation: \( \forall a, b \in H: a \cdot b \in H \) |
| 86 | + \item \( H \) is closed under inverses: \( \forall a \in H: a^{-1} \in H \) |
| 87 | + \item \( H \) contains the identity element: \( e \in H \) |
| 88 | + \item \( H \) is closed under associativity: \( \forall a, b \in H: a \cdot b \in H \) |
| 89 | +\end{enumerate} |
| 90 | + |
| 91 | +It suffices to check closure under operation and inverses for \( H \). |
| 92 | + |
| 93 | +\subsection{Normal Subgroup} |
| 94 | + |
| 95 | +A subgroup \( H \) of a group \( G \) is normal in \( G \) if: |
| 96 | +\begin{enumerate} |
| 97 | + \item \( H \) is a subgroup of \( G \): |
| 98 | + \begin{itemize} |
| 99 | + \item \( H \) is closed under the operation: \( \forall a, b \in H: a \cdot b \in H \) |
| 100 | + \item \( H \) has an inverse element: \( \forall a \in H: a^{-1} \in H \) |
| 101 | + \end{itemize} |
| 102 | + \item \( H \) is closed under conjugation: \( \forall a \in G: aHa^{-1} = H \) |
| 103 | +\end{enumerate} |
| 104 | + |
| 105 | +\subsection{Group Homomorphism} |
| 106 | + |
| 107 | +A group homomorphism is a function \( f: G \to H \) satisfying: |
| 108 | +\[ f(a \cdot b) = f(a) \cdot f(b) \] |
| 109 | + |
| 110 | +\subsection{Kernel of a Homomorphism} |
| 111 | + |
| 112 | +The kernel of a homomorphism \( f \) is the set of elements in \( G \) mapped to the identity element in \( H \): |
| 113 | +\[ \ker f = \{ a \in G : f(a) = e_H \} \] |
| 114 | + |
| 115 | +\subsection{Image of a Homomorphism} |
| 116 | + |
| 117 | +The image of a homomorphism is the set of elements in \( H \) obtained by applying \( f \) to elements in \( G \): |
| 118 | +\[ \text{Im} f = \{ f(a) \in H : a \in G \} \] |
| 119 | + |
| 120 | +\subsection{Order of an Element in a Group} |
| 121 | + |
| 122 | +The order of an element \( a \) in a group \( G \) is defined as: |
| 123 | +\[ \text{ord}(a) = \min\{ n \in \mathbb{N} : a^n = e \} \] |
| 124 | + |
| 125 | +If no such \( n \) exists, \( a \) has infinite order. |
| 126 | + |
| 127 | +\subsection{Generator of a Group} |
| 128 | + |
| 129 | +An element \( a \) in a group \( G \) is a generator if: |
| 130 | +\[ \forall b \in G: \exists n \in \mathbb{Z}: b = a^n \] |
| 131 | + |
| 132 | +\subsection{Coset of a Group} |
| 133 | + |
| 134 | +The coset of a subgroup \( H \) in a group \( G \) is defined as: |
| 135 | +\begin{itemize} |
| 136 | + \item Left coset: \( aH = \{ a \cdot h : h \in H \} \) |
| 137 | + \item Right coset: \( Ha = \{ h \cdot a : h \in H \} \) |
| 138 | + \item Double coset: \( aH = Ha \) |
| 139 | +\end{itemize} |
| 140 | + |
| 141 | +\subsection{Cyclic Group} |
| 142 | + |
| 143 | +A group \( G \) is cyclic if there exists an element \( a \in G \) such that: |
| 144 | +\[ G = \{ a^n : n \in \mathbb{Z} \} \] |
| 145 | + |
| 146 | +Thus, \( G \) is generated by one element \( a \). |
| 147 | + |
| 148 | +\subsection{Dihedral Group} |
| 149 | + |
| 150 | +The dihedral group \( D_n \) is the group of symmetries of a regular \( n \)-gon. |
| 151 | + |
| 152 | +\subsection{Quotient Group} |
| 153 | + |
| 154 | +The quotient group \( G/H \) of a group \( G \) by a normal subgroup \( H \) is the set of cosets of \( H \) in \( G \) with the operation: |
| 155 | +\[ (aH) \cdot (bH) = (a \cdot b)H \] |
| 156 | + |
| 157 | +\subsection{Ring} |
| 158 | + |
| 159 | +A ring \( R \) is a set with two operations \( + \) and \( \cdot \) satisfying: |
| 160 | +\begin{enumerate} |
| 161 | + \item \( (R, +) \) is an abelian group |
| 162 | + \item \( \cdot \) is associative: \( \forall a, b, c \in R: a \cdot (b \cdot c) = (a \cdot b) \cdot c \) |
| 163 | + \item Distributivity of multiplication over addition: |
| 164 | + \[ \forall a, b, c \in R: a \cdot (b + c) = a \cdot b + a \cdot c \quad \text{and} \quad (a + b) \cdot c = a \cdot c + b \cdot c \] |
| 165 | +\end{enumerate} |
| 166 | + |
| 167 | +\subsection{Invertible Element in a Ring} |
| 168 | + |
| 169 | +An element \( a \) in a ring \( R \) is invertible if there exists an element \( b \in R \) such that: |
| 170 | +\[ a \cdot b = b \cdot a = 1 \] |
| 171 | + |
| 172 | +The set of invertible elements is denoted as \( R^* = \{ a \in R : a \text{ is invertible} \} \) |
| 173 | + |
| 174 | +\subsection{Subring} |
| 175 | + |
| 176 | +A subring of a ring \( R \) is a subset \( S \subseteq R \) with operations \( + \) and \( \cdot \) such that: |
| 177 | +\begin{enumerate} |
| 178 | + \item \( S \) is closed under addition: \( \forall a, b \in S: a + b \in S \) |
| 179 | + \item \( S \) is closed under multiplication: \( \forall a, b \in S: a \cdot b \in S \) |
| 180 | +\end{enumerate} |
| 181 | + |
| 182 | +\subsection{Ring Homomorphism} |
| 183 | + |
| 184 | +A ring homomorphism is a function \( f: R \to S \) satisfying: |
| 185 | +\begin{enumerate} |
| 186 | + \item \( f \) is a group homomorphism: \( f(a + b) = f(a) + f(b) \) |
| 187 | + \item \( f \) is a ring homomorphism: \( f(a \cdot b) = f(a) \cdot f(b) \) |
| 188 | +\end{enumerate} |
| 189 | + |
| 190 | +\subsection{Ideal} |
| 191 | + |
| 192 | +An ideal of a ring \( R \) is a subset \( I \subseteq R \) satisfying: |
| 193 | +\begin{enumerate} |
| 194 | + \item \( (I, +) \) is a subgroup of the abelian group \( (R, +) \) |
| 195 | + \item \( I \) is closed under multiplication: \( \forall a, b \in I: a \cdot b \in I \) |
| 196 | + \item \( I \) is closed under addition: \( \forall a, b \in I: a + b \in I \) |
| 197 | + \item \( I \) is closed under multiplication by ring elements: \( \forall a \in I, r \in R: a \cdot r \in I \) and \( r \cdot a \in I \) |
| 198 | +\end{enumerate} |
| 199 | + |
| 200 | +\subsection{Principal Ideal} |
| 201 | + |
| 202 | +A principal ideal generated by an element \( a \in R \) is the set: |
| 203 | +\[ \langle a \rangle = \{ a \cdot r : r \in R \} \] |
| 204 | + |
| 205 | +\subsection{Quotient Ring} |
| 206 | + |
| 207 | +The quotient ring \( R/I \) of a ring \( R \) by an ideal \( I \) is the set of cosets of \( I \) in \( R \) with operations: |
| 208 | +\[ (a + I) + (b + I) = (a + b) + I \] |
| 209 | +\[ (a + I) \cdot (b + I) = (a \cdot b) + I \] |
| 210 | + |
| 211 | +\section{Theorems} |
| 212 | + |
| 213 | +\subsection{Lagrange's Theorem} |
| 214 | + |
| 215 | +If \( G \) is a finite group and \( H \) is a subgroup of \( G \), then the order of \( H \) divides the order of \( G \): |
| 216 | +\[ |G| = |H| \cdot [G : H] \] |
| 217 | +Or equivalently: |
| 218 | +\[ |H| \mid |G| \] |
| 219 | + |
| 220 | +\subsection{Chinese Remainder Theorem} |
| 221 | + |
| 222 | +If \( m_1, m_2, \ldots, m_n \) are pairwise coprime integers, then the system of congruences: |
| 223 | +\[ \begin{cases} x \equiv a_1 \pmod{m_1} \\ x \equiv a_2 \pmod{m_2} \\ \vdots \\ x \equiv a_n \pmod{m_n} \end{cases} \] |
| 224 | +has exactly one solution modulo \( m_1 \cdot m_2 \cdot \ldots \cdot m_n \). |
| 225 | + |
| 226 | +\subsection{Euler's Theorem} |
| 227 | + |
| 228 | +For any integer \( a \) coprime to \( n \), it holds that: |
| 229 | +\[ a^{\varphi(n)} \equiv 1 \pmod{n} \] |
| 230 | + |
| 231 | +\end{document} |
| 232 | + |
| 233 | + |
| 234 | +\end{document} |
0 commit comments