Skip to content

Commit 7f81ecf

Browse files
committed
algebra2 notes.md -> latex
1 parent 0e502a0 commit 7f81ecf

File tree

7 files changed

+235
-73
lines changed

7 files changed

+235
-73
lines changed

README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -31,7 +31,7 @@ I hereby present a treasure trove of resources covering various topics in mathem
3131
- [Euclidean Algorithm](https://github.com/Rafisto/uni/blob/master/algebra/programy/zadanie39.py) - $gcd(a, b)$
3232
- [Extended Euclidean Algorithm](https://github.com/Rafisto/uni/blob/master/algebra/programy/zadanie40.py) - $ax + by = \gcd(a, b)$
3333
- [An extravagend function analysis](https://github.com/Rafisto/uni/blob/master/algebra/programy/zadanie49.py) - analysis of $f(n)=\left|\{(a,b) \mid 1 \leq a,b \leq n, \gcd(a,b)=1\}\right| \cdot n^{-2}$
34-
- [RSA Algorithm Exponent Brute-Forcer](https://github.com/Rafisto/uni/blob/master/algebra2/rsa34.py) - Crack RSA exponent
34+
- [RSA Algorithm Exponent Brute-Forcer](https://github.com/Rafisto/uni/blob/master/algebra2/programs/rsa34.py) - Crack RSA exponent
3535
- [XOR Cipher](https://github.com/Rafisto/uni/blob/master/logika/programy/xorcipher.py) - One time pad encryption, decryption, key generation and key swap.
3636

3737
Copyright 2024 © Rafał Włodarczyk

algebra2/algebra2.pdf

151 KB
Binary file not shown.

algebra2/algebra2.tex

Lines changed: 234 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,234 @@
1+
\documentclass{article}
2+
3+
\usepackage[english]{babel}
4+
\usepackage[utf8]{inputenc}
5+
\usepackage{polski}
6+
\usepackage[T1]{fontenc}
7+
8+
\usepackage[margin=1.5in]{geometry}
9+
10+
\usepackage{color}
11+
\usepackage{amsmath}
12+
\usepackage{amsfonts}
13+
\usepackage{graphicx}
14+
\usepackage{booktabs}
15+
\usepackage{amsthm}
16+
\usepackage{pdfpages}
17+
\usepackage{wrapfig}
18+
\usepackage{hyperref}
19+
\usepackage{etoolbox}
20+
21+
\makeatletter
22+
\newenvironment{definition}[1]{%
23+
\trivlist
24+
\item[\hskip\labelsep\textbf{Definition. #1.}]
25+
\ignorespaces
26+
}{%
27+
\endtrivlist
28+
}
29+
\newenvironment{fact}[1]{%
30+
\trivlist
31+
\item[\hskip\labelsep\textbf{Fact. #1.}]
32+
\ignorespaces
33+
}{%
34+
\endtrivlist
35+
}
36+
\newenvironment{theorem}[1]{%
37+
\trivlist
38+
\item[\hskip\labelsep\textbf{Theorem. #1.}]
39+
\ignorespaces
40+
}{%
41+
\endtrivlist
42+
}
43+
\newenvironment{information}[1]{%
44+
\trivlist
45+
\item[\hskip\labelsep\textbf{Information. #1.}]
46+
\ignorespaces
47+
}{%
48+
\endtrivlist
49+
}
50+
\newenvironment{identities}[1]{%
51+
\trivlist
52+
\item[\hskip\labelsep\textbf{Identities. #1.}]
53+
\ignorespaces
54+
}{%
55+
\endtrivlist
56+
}
57+
\makeatother
58+
59+
\title{Abstract algebra and coding}
60+
\author{Rafał Włodarczyk}
61+
\date{INA 2, 2024}
62+
63+
\begin{document}
64+
65+
\maketitle
66+
67+
\tableofcontents
68+
69+
\section{Definitions}
70+
71+
\subsection{Group}
72+
73+
A group is a set \( G \) along with an operation \( \cdot \) satisfying the following axioms:
74+
\begin{enumerate}
75+
\item \textbf{Operation is defined}: \( \forall a, b \in G: a \cdot b \in G \)
76+
\item \textbf{Operation is associative}: \( \forall a, b, c \in G: a \cdot (b \cdot c) = (a \cdot b) \cdot c \)
77+
\item \textbf{Identity element exists}: \( \exists e \in G: \forall a \in G: a \cdot e = e \cdot a = a \)
78+
\item \textbf{Inverse element exists}: \( \forall a \in G: \exists a^{-1} \in G: a \cdot a^{-1} = a^{-1} \cdot a = e \)
79+
\end{enumerate}
80+
81+
\subsection{Subgroup}
82+
83+
A subset \( H \) of a group \( G \) is a subgroup if:
84+
\begin{enumerate}
85+
\item \( H \) is closed under the operation: \( \forall a, b \in H: a \cdot b \in H \)
86+
\item \( H \) is closed under inverses: \( \forall a \in H: a^{-1} \in H \)
87+
\item \( H \) contains the identity element: \( e \in H \)
88+
\item \( H \) is closed under associativity: \( \forall a, b \in H: a \cdot b \in H \)
89+
\end{enumerate}
90+
91+
It suffices to check closure under operation and inverses for \( H \).
92+
93+
\subsection{Normal Subgroup}
94+
95+
A subgroup \( H \) of a group \( G \) is normal in \( G \) if:
96+
\begin{enumerate}
97+
\item \( H \) is a subgroup of \( G \):
98+
\begin{itemize}
99+
\item \( H \) is closed under the operation: \( \forall a, b \in H: a \cdot b \in H \)
100+
\item \( H \) has an inverse element: \( \forall a \in H: a^{-1} \in H \)
101+
\end{itemize}
102+
\item \( H \) is closed under conjugation: \( \forall a \in G: aHa^{-1} = H \)
103+
\end{enumerate}
104+
105+
\subsection{Group Homomorphism}
106+
107+
A group homomorphism is a function \( f: G \to H \) satisfying:
108+
\[ f(a \cdot b) = f(a) \cdot f(b) \]
109+
110+
\subsection{Kernel of a Homomorphism}
111+
112+
The kernel of a homomorphism \( f \) is the set of elements in \( G \) mapped to the identity element in \( H \):
113+
\[ \ker f = \{ a \in G : f(a) = e_H \} \]
114+
115+
\subsection{Image of a Homomorphism}
116+
117+
The image of a homomorphism is the set of elements in \( H \) obtained by applying \( f \) to elements in \( G \):
118+
\[ \text{Im} f = \{ f(a) \in H : a \in G \} \]
119+
120+
\subsection{Order of an Element in a Group}
121+
122+
The order of an element \( a \) in a group \( G \) is defined as:
123+
\[ \text{ord}(a) = \min\{ n \in \mathbb{N} : a^n = e \} \]
124+
125+
If no such \( n \) exists, \( a \) has infinite order.
126+
127+
\subsection{Generator of a Group}
128+
129+
An element \( a \) in a group \( G \) is a generator if:
130+
\[ \forall b \in G: \exists n \in \mathbb{Z}: b = a^n \]
131+
132+
\subsection{Coset of a Group}
133+
134+
The coset of a subgroup \( H \) in a group \( G \) is defined as:
135+
\begin{itemize}
136+
\item Left coset: \( aH = \{ a \cdot h : h \in H \} \)
137+
\item Right coset: \( Ha = \{ h \cdot a : h \in H \} \)
138+
\item Double coset: \( aH = Ha \)
139+
\end{itemize}
140+
141+
\subsection{Cyclic Group}
142+
143+
A group \( G \) is cyclic if there exists an element \( a \in G \) such that:
144+
\[ G = \{ a^n : n \in \mathbb{Z} \} \]
145+
146+
Thus, \( G \) is generated by one element \( a \).
147+
148+
\subsection{Dihedral Group}
149+
150+
The dihedral group \( D_n \) is the group of symmetries of a regular \( n \)-gon.
151+
152+
\subsection{Quotient Group}
153+
154+
The quotient group \( G/H \) of a group \( G \) by a normal subgroup \( H \) is the set of cosets of \( H \) in \( G \) with the operation:
155+
\[ (aH) \cdot (bH) = (a \cdot b)H \]
156+
157+
\subsection{Ring}
158+
159+
A ring \( R \) is a set with two operations \( + \) and \( \cdot \) satisfying:
160+
\begin{enumerate}
161+
\item \( (R, +) \) is an abelian group
162+
\item \( \cdot \) is associative: \( \forall a, b, c \in R: a \cdot (b \cdot c) = (a \cdot b) \cdot c \)
163+
\item Distributivity of multiplication over addition:
164+
\[ \forall a, b, c \in R: a \cdot (b + c) = a \cdot b + a \cdot c \quad \text{and} \quad (a + b) \cdot c = a \cdot c + b \cdot c \]
165+
\end{enumerate}
166+
167+
\subsection{Invertible Element in a Ring}
168+
169+
An element \( a \) in a ring \( R \) is invertible if there exists an element \( b \in R \) such that:
170+
\[ a \cdot b = b \cdot a = 1 \]
171+
172+
The set of invertible elements is denoted as \( R^* = \{ a \in R : a \text{ is invertible} \} \)
173+
174+
\subsection{Subring}
175+
176+
A subring of a ring \( R \) is a subset \( S \subseteq R \) with operations \( + \) and \( \cdot \) such that:
177+
\begin{enumerate}
178+
\item \( S \) is closed under addition: \( \forall a, b \in S: a + b \in S \)
179+
\item \( S \) is closed under multiplication: \( \forall a, b \in S: a \cdot b \in S \)
180+
\end{enumerate}
181+
182+
\subsection{Ring Homomorphism}
183+
184+
A ring homomorphism is a function \( f: R \to S \) satisfying:
185+
\begin{enumerate}
186+
\item \( f \) is a group homomorphism: \( f(a + b) = f(a) + f(b) \)
187+
\item \( f \) is a ring homomorphism: \( f(a \cdot b) = f(a) \cdot f(b) \)
188+
\end{enumerate}
189+
190+
\subsection{Ideal}
191+
192+
An ideal of a ring \( R \) is a subset \( I \subseteq R \) satisfying:
193+
\begin{enumerate}
194+
\item \( (I, +) \) is a subgroup of the abelian group \( (R, +) \)
195+
\item \( I \) is closed under multiplication: \( \forall a, b \in I: a \cdot b \in I \)
196+
\item \( I \) is closed under addition: \( \forall a, b \in I: a + b \in I \)
197+
\item \( I \) is closed under multiplication by ring elements: \( \forall a \in I, r \in R: a \cdot r \in I \) and \( r \cdot a \in I \)
198+
\end{enumerate}
199+
200+
\subsection{Principal Ideal}
201+
202+
A principal ideal generated by an element \( a \in R \) is the set:
203+
\[ \langle a \rangle = \{ a \cdot r : r \in R \} \]
204+
205+
\subsection{Quotient Ring}
206+
207+
The quotient ring \( R/I \) of a ring \( R \) by an ideal \( I \) is the set of cosets of \( I \) in \( R \) with operations:
208+
\[ (a + I) + (b + I) = (a + b) + I \]
209+
\[ (a + I) \cdot (b + I) = (a \cdot b) + I \]
210+
211+
\section{Theorems}
212+
213+
\subsection{Lagrange's Theorem}
214+
215+
If \( G \) is a finite group and \( H \) is a subgroup of \( G \), then the order of \( H \) divides the order of \( G \):
216+
\[ |G| = |H| \cdot [G : H] \]
217+
Or equivalently:
218+
\[ |H| \mid |G| \]
219+
220+
\subsection{Chinese Remainder Theorem}
221+
222+
If \( m_1, m_2, \ldots, m_n \) are pairwise coprime integers, then the system of congruences:
223+
\[ \begin{cases} x \equiv a_1 \pmod{m_1} \\ x \equiv a_2 \pmod{m_2} \\ \vdots \\ x \equiv a_n \pmod{m_n} \end{cases} \]
224+
has exactly one solution modulo \( m_1 \cdot m_2 \cdot \ldots \cdot m_n \).
225+
226+
\subsection{Euler's Theorem}
227+
228+
For any integer \( a \) coprime to \( n \), it holds that:
229+
\[ a^{\varphi(n)} \equiv 1 \pmod{n} \]
230+
231+
\end{document}
232+
233+
234+
\end{document}

algebra2/notes.tex

Lines changed: 0 additions & 72 deletions
This file was deleted.
File renamed without changes.
File renamed without changes.
File renamed without changes.

0 commit comments

Comments
 (0)