Skip to content
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
Show all changes
18 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -27,9 +27,12 @@ max_workers_preprocessing: 64 # Maximum parallel workers

num_time_steps: 14
num_training_samples: 8
num_validation_samples: 8
start_lr: 0.0001
end_lr: 0.0000003
epochs: 10000
validate_every_n_epochs: 10
save_ckpt_every_n_epochs: 10

# ┌───────────────────────────────────────────┐
# │ Performance Optimization │
Expand Down
7 changes: 1 addition & 6 deletions examples/structural_mechanics/crash/inference.py
Original file line number Diff line number Diff line change
Expand Up @@ -197,12 +197,7 @@ def run_on_single_run(self, run_path: str):
sample = sample.to(self.device)

# Forward rollout: expected to return [T,N,3]
pred_seq = self.model(
node_features=sample.node_features,
edge_index=sample.edge_index,
edge_features=sample.edge_features,
data_stats=data_stats,
)
pred_seq = self.model(sample=sample, data_stats=data_stats)

# Exact sequence (if provided)
exact_seq = None
Expand Down
108 changes: 107 additions & 1 deletion examples/structural_mechanics/crash/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,6 +38,7 @@

# Import unified datapipe
from datapipe import SimSample, simsample_collate
from omegaconf import open_dict


class Trainer:
Expand Down Expand Up @@ -109,6 +110,49 @@ def __init__(self, cfg: DictConfig, logger0: RankZeroLoggingWrapper):
)
self.sampler = sampler

if cfg.training.num_validation_samples > 0:
self.num_validation_replicas = min(self.dist.world_size, cfg.training.num_validation_samples)
self.num_validation_samples = cfg.training.num_validation_samples // self.num_validation_replicas * self.num_validation_replicas
logger0.info(f'Number of validation samples: {self.num_validation_samples}')

# Create a validation dataset
val_cfg = self.cfg.datapipe
with open_dict(val_cfg): # or open_dict(cfg) to open the whole tree
val_cfg.data_dir = self.cfg.training.raw_data_dir_test
val_cfg.num_samples = self.num_validation_samples
val_dataset = instantiate(
val_cfg,
name="crash_test",
split="test",
logger=logger0,
)

if self.dist.rank < self.num_validation_replicas:
# Sampler
if self.dist.world_size > 1:
sampler = DistributedSampler(
val_dataset,
num_replicas=self.num_validation_replicas,
rank=self.dist.rank,
shuffle=False,
drop_last=True,
)
else:
sampler = None

self.val_dataloader = torch.utils.data.DataLoader(
val_dataset,
batch_size=1, # variable N per sample
shuffle=(sampler is None),
drop_last=True,
pin_memory=True,
num_workers=cfg.training.num_dataloader_workers,
sampler=sampler,
collate_fn=simsample_collate,
)
else:
self.val_dataloader = torch.utils.data.DataLoader(torch.utils.data.Subset(val_dataset, []), batch_size=1)

# Model
self.model = instantiate(cfg.model)
logging.getLogger().setLevel(logging.INFO)
Expand Down Expand Up @@ -199,6 +243,48 @@ def backward(self, loss):
loss.backward()
self.optimizer.step()

@torch.no_grad()
def validate(self, epoch):
"""Run validation error computation"""
self.model.eval()

MSE = torch.zeros(1, device=self.dist.device)
MSE_w_time = torch.zeros(self.rollout_steps, device=self.dist.device)
for idx, sample in enumerate(self.val_dataloader):
sample = sample[0].to(self.dist.device) # SimSample .to()
T = self.rollout_steps

# Model forward
pred_seq = self.model(sample=sample, data_stats=self.data_stats)

# Exact sequence (if provided)
exact_seq = None
if sample.node_target is not None:
N = sample.node_target.size(0)
Fo = 3 # output features per node
assert sample.node_target.size(1) == T * Fo, (
f"target dim {sample.node_target.size(1)} != {T * Fo}"
)
exact_seq = sample.node_target.view(N, T, Fo).transpose(0, 1).contiguous() # [T,N,Fo]

# Compute and add error
SqError = torch.square(pred_seq - exact_seq)
MSE_w_time += torch.mean(SqError, dim=(1,2))
MSE += torch.mean(SqError)

# Sum errors across all ranks
if self.dist.world_size > 1:
torch.distributed.all_reduce(MSE, op=torch.distributed.ReduceOp.SUM)
torch.distributed.all_reduce(MSE_w_time, op=torch.distributed.ReduceOp.SUM)

val_stats = {
'MSE_w_time': MSE_w_time / self.num_validation_samples,
'MSE': MSE / self.num_validation_samples,
}

self.model.train() # Switch back to training mode
return val_stats


@hydra.main(version_base="1.3", config_path="conf", config_name="config")
def main(cfg: DictConfig) -> None:
Expand Down Expand Up @@ -243,7 +329,8 @@ def main(cfg: DictConfig) -> None:

if dist.world_size > 1:
torch.distributed.barrier()
if dist.rank == 0:

if dist.rank == 0 and (epoch + 1) % cfg.training.save_ckpt_every_n_epochs == 0:
save_checkpoint(
cfg.training.ckpt_path,
models=trainer.model,
Expand All @@ -254,6 +341,25 @@ def main(cfg: DictConfig) -> None:
)
logger.info(f"Saved model on rank {dist.rank}")

# Validation
if cfg.training.num_validation_samples > 0 and (epoch + 1) % cfg.training.validate_every_n_epochs == 0:
# logger0.info(f"Validation started...")
val_stats = trainer.validate(epoch)

# Log detailed validation statistics
logger0.info(
f"Validation epoch {epoch+1}: "
f"MSE: {val_stats['MSE'].item():.3e}, "
)

if dist.rank == 0:
# Log to tensorboard
trainer.writer.add_scalar("val/MSE", val_stats['MSE'].item(), epoch)

# Log individual timestep relative errors
for i in range(len(val_stats['MSE_w_time'])):
trainer.writer.add_scalar(f"val/timestep_{i}_MSE", val_stats['MSE_w_time'][i].item(), epoch)

logger0.info("Training completed!")
if dist.rank == 0:
trainer.writer.close()
Expand Down