Skip to content

Conversation

@jhaotingc
Copy link
Collaborator

@jhaotingc jhaotingc commented Dec 8, 2025

Summary by CodeRabbit

  • New Features
    • Added GPU-specific optimization detection to improve kernel performance and speculative decoding efficiency on compatible hardware configurations.

✏️ Tip: You can customize this high-level summary in your review settings.

Description

Fix missing function in TrtllmAttentionWrapper introduced by #8383.

  File "/scratch/TensorRT-LLM-dev-2/tensorrt_llm/_torch/modules/attention.py", line 450, in _attn_impl
    attn_output = self.attn.forward(
                  ^^^^^^^^^^^^^^^^^^
  File "/scratch/TensorRT-LLM-dev-2/tensorrt_llm/_torch/attention_backend/trtllm.py", line 1611, in forward
    output, output_sf = self.wrapper.run(
                        ^^^^^^^^^^^^^^^^^
  File "/scratch/TensorRT-LLM-dev-2/tensorrt_llm/_torch/attention_backend/trtllm.py", line 478, in run
    if self.is_sm_version_trtllm_gen_kernel(sm=get_sm_version()):
       ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
AttributeError: 'TrtllmAttentionWrapper' object has no attribute 'is_sm_version_trtllm_gen_kernel'

Test Coverage

PR Checklist

Please review the following before submitting your PR:

  • PR description clearly explains what and why. If using CodeRabbit's summary, please make sure it makes sense.

  • PR Follows TRT-LLM CODING GUIDELINES to the best of your knowledge.

  • Test cases are provided for new code paths (see test instructions)

  • Any new dependencies have been scanned for license and vulnerabilities

  • CODEOWNERS updated if ownership changes

  • Documentation updated as needed

  • Update tava architecture diagram if there is a significant design change in PR.

  • The reviewers assigned automatically/manually are appropriate for the PR.

  • Please check this after reviewing the above items as appropriate for this PR.

GitHub Bot Help

/bot [-h] ['run', 'kill', 'skip', 'reuse-pipeline'] ...

Provide a user friendly way for developers to interact with a Jenkins server.

Run /bot [-h|--help] to print this help message.

See details below for each supported subcommand.

run [--reuse-test (optional)pipeline-id --disable-fail-fast --skip-test --stage-list "A10-PyTorch-1, xxx" --gpu-type "A30, H100_PCIe" --test-backend "pytorch, cpp" --add-multi-gpu-test --only-multi-gpu-test --disable-multi-gpu-test --post-merge --extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx" --detailed-log --debug(experimental)]

Launch build/test pipelines. All previously running jobs will be killed.

--reuse-test (optional)pipeline-id (OPTIONAL) : Allow the new pipeline to reuse build artifacts and skip successful test stages from a specified pipeline or the last pipeline if no pipeline-id is indicated. If the Git commit ID has changed, this option will be always ignored. The DEFAULT behavior of the bot is to reuse build artifacts and successful test results from the last pipeline.

--disable-reuse-test (OPTIONAL) : Explicitly prevent the pipeline from reusing build artifacts and skipping successful test stages from a previous pipeline. Ensure that all builds and tests are run regardless of previous successes.

--disable-fail-fast (OPTIONAL) : Disable fail fast on build/tests/infra failures.

--skip-test (OPTIONAL) : Skip all test stages, but still run build stages, package stages and sanity check stages. Note: Does NOT update GitHub check status.

--stage-list "A10-PyTorch-1, xxx" (OPTIONAL) : Only run the specified test stages. Examples: "A10-PyTorch-1, xxx". Note: Does NOT update GitHub check status.

--gpu-type "A30, H100_PCIe" (OPTIONAL) : Only run the test stages on the specified GPU types. Examples: "A30, H100_PCIe". Note: Does NOT update GitHub check status.

--test-backend "pytorch, cpp" (OPTIONAL) : Skip test stages which don't match the specified backends. Only support [pytorch, cpp, tensorrt, triton]. Examples: "pytorch, cpp" (does not run test stages with tensorrt or triton backend). Note: Does NOT update GitHub pipeline status.

--only-multi-gpu-test (OPTIONAL) : Only run the multi-GPU tests. Note: Does NOT update GitHub check status.

--disable-multi-gpu-test (OPTIONAL) : Disable the multi-GPU tests. Note: Does NOT update GitHub check status.

--add-multi-gpu-test (OPTIONAL) : Force run the multi-GPU tests in addition to running L0 pre-merge pipeline.

--post-merge (OPTIONAL) : Run the L0 post-merge pipeline instead of the ordinary L0 pre-merge pipeline.

--extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx" (OPTIONAL) : Run the ordinary L0 pre-merge pipeline and specified test stages. Examples: --extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx".

--detailed-log (OPTIONAL) : Enable flushing out all logs to the Jenkins console. This will significantly increase the log volume and may slow down the job.

--debug (OPTIONAL) : Experimental feature. Enable access to the CI container for debugging purpose. Note: Specify exactly one stage in the stage-list parameter to access the appropriate container environment. Note: Does NOT update GitHub check status.

For guidance on mapping tests to stage names, see docs/source/reference/ci-overview.md
and the scripts/test_to_stage_mapping.py helper.

kill

kill

Kill all running builds associated with pull request.

skip

skip --comment COMMENT

Skip testing for latest commit on pull request. --comment "Reason for skipping build/test" is required. IMPORTANT NOTE: This is dangerous since lack of user care and validation can cause top of tree to break.

reuse-pipeline

reuse-pipeline

Reuse a previous pipeline to validate current commit. This action will also kill all currently running builds associated with the pull request. IMPORTANT NOTE: This is dangerous since lack of user care and validation can cause top of tree to break.

Signed-off-by: Jhao-Ting Chen <[email protected]>
@jhaotingc jhaotingc requested a review from a team as a code owner December 8, 2025 20:10
@jhaotingc jhaotingc requested a review from brb-nv December 8, 2025 20:10
@jhaotingc
Copy link
Collaborator Author

/bot run --disable-fail-fast

@coderabbitai
Copy link
Contributor

coderabbitai bot commented Dec 8, 2025

📝 Walkthrough

Walkthrough

A new utility method is_sm_version_trtllm_gen_kernel() is added to the TrtllmAttentionWrapper class to gate kernel generation behavior based on SM version compatibility, excluding SM versions below 100 and versions 120–121 from TRT-LLM gen kernel paths.

Changes

Cohort / File(s) Summary
SM version gating utility
tensorrt_llm/_torch/attention_backend/trtllm.py
Added method is_sm_version_trtllm_gen_kernel(self, sm) to check SM compatibility for TRT-LLM generation kernels, returning boolean based on SM version exclusions.

Estimated code review effort

🎯 1 (Trivial) | ⏱️ ~3 minutes

  • Simple utility method with straightforward boolean logic
  • Verify SM version exclusion conditions (sm < 100 and SM 120/121) align with intended kernel compatibility constraints
  • Confirm method placement and any duplicate definitions are intentional

Pre-merge checks and finishing touches

❌ Failed checks (1 warning, 1 inconclusive)
Check name Status Explanation Resolution
Docstring Coverage ⚠️ Warning Docstring coverage is 50.00% which is insufficient. The required threshold is 80.00%. You can run @coderabbitai generate docstrings to improve docstring coverage.
Description check ❓ Inconclusive The PR description identifies a specific bug (AttributeError for missing is_sm_version_trtllm_gen_kernel method) and references issue #8383, but the Test Coverage section is empty and lacks implementation details. Provide details in the Test Coverage section on which tests validate this fix, and add more implementation details about how the missing method was added to TrtllmAttentionWrapper.
✅ Passed checks (1 passed)
Check name Status Explanation
Title check ✅ Passed The title clearly references issue #8383 and indicates a fix for a TensorRT-LLM backend Python error, directly relating to the code changes.
✨ Finishing touches
  • 📝 Generate docstrings
🧪 Generate unit tests (beta)
  • Create PR with unit tests
  • Post copyable unit tests in a comment

Thanks for using CodeRabbit! It's free for OSS, and your support helps us grow. If you like it, consider giving us a shout-out.

❤️ Share

Comment @coderabbitai help to get the list of available commands and usage tips.

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 0

🧹 Nitpick comments (1)
tensorrt_llm/_torch/attention_backend/trtllm.py (1)

607-609: Remove duplicate is_sm_version_trtllm_gen_kernel definition in TrtllmAttentionWrapper.

This method is defined twice in the same class (once here and again at Line 1377). Python will keep only the later definition, so this copy is redundant and risks future divergence if only one is edited. Keep a single definition and drop this one.

Apply this diff to remove the duplicate here:

-    def is_sm_version_trtllm_gen_kernel(self, sm):
-        return not (sm < 100 or sm in [120, 121])
-
📜 Review details

Configuration used: Path: .coderabbit.yaml

Review profile: CHILL

Plan: Pro

📥 Commits

Reviewing files that changed from the base of the PR and between faabc1a and b5a65b6.

📒 Files selected for processing (1)
  • tensorrt_llm/_torch/attention_backend/trtllm.py (1 hunks)
🧰 Additional context used
📓 Path-based instructions (2)
**/*.py

📄 CodeRabbit inference engine (CODING_GUIDELINES.md)

**/*.py: The code developed for TensorRT-LLM should conform to Python 3.8+
Indent Python code with 4 spaces; do not use tabs
Always maintain the namespace when importing in Python, even if only one class or function from a module is used (e.g., use from package.subpackage import foo and then foo.SomeClass() instead of from package.subpackage.foo import SomeClass)
Python filenames should use snake_case (e.g., some_file.py)
Python class names should use PascalCase (e.g., class SomeClass)
Python function and method names should use snake_case (e.g., def my_awesome_function():)
Python local variable names should use snake_case, with prefix k for variable names that start with a number (e.g., k_99th_percentile = ...)
Python global variables should use upper snake_case with prefix G (e.g., G_MY_GLOBAL = ...)
Python constants should use upper snake_case (e.g., MY_CONSTANT = ...)
Avoid shadowing variables declared in an outer scope in Python
Initialize all externally visible members of a Python class in the constructor
For Python interfaces that may be used outside a file, prefer docstrings over comments
Python comments should be reserved for code within a function, or interfaces that are local to a file
Use Google style docstrings for Python classes and functions, which can be parsed by Sphinx
Python attributes and variables can be documented inline with type and description (e.g., self.x = 5 followed by """<type>: Description of 'x'""" )
Avoid using reflection in Python when functionality can be easily achieved without reflection
When using try-except blocks in Python, limit the except clause to the smallest set of specific errors possible instead of catching all exceptions
When using try-except blocks in Python to handle multiple possible variable types (duck-typing), keep the body of the try as small as possible and use the else block to implement the logic

Files:

  • tensorrt_llm/_torch/attention_backend/trtllm.py
**/*.{cpp,h,cu,py}

📄 CodeRabbit inference engine (CODING_GUIDELINES.md)

All TensorRT-LLM Open Source Software code files should contain an NVIDIA copyright header that includes the current year at the top

Files:

  • tensorrt_llm/_torch/attention_backend/trtllm.py
🧠 Learnings (6)
📓 Common learnings
Learnt from: venkywonka
Repo: NVIDIA/TensorRT-LLM PR: 6029
File: .github/pull_request_template.md:45-53
Timestamp: 2025-08-27T17:50:13.264Z
Learning: For PR templates in TensorRT-LLM, avoid suggesting changes that would increase developer overhead, such as converting plain bullets to mandatory checkboxes. The team prefers guidance-style bullets that don't require explicit interaction to reduce friction in the PR creation process.
Learnt from: nzmora-nvidia
Repo: NVIDIA/TensorRT-LLM PR: 9163
File: tensorrt_llm/_torch/auto_deploy/custom_ops/quant.py:107-113
Timestamp: 2025-11-14T11:22:03.729Z
Learning: In TensorRT-LLM AutoDeploy custom ops, when adding hardware capability checks to select between kernel implementations (e.g., cuBLAS vs. CUDA kernel), use descriptive variable names that identify the specific GPU architectures or families being targeted (e.g., `is_blackwell_geforce_or_ada`) rather than generic names like `enable_cuda_core`. This makes it clear that the code is selecting an implementation path based on hardware capabilities, not enabling/disabling hardware features.
Learnt from: djns99
Repo: NVIDIA/TensorRT-LLM PR: 7104
File: cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h:999-1000
Timestamp: 2025-08-22T01:54:35.850Z
Learning: The `internal_cutlass_kernels` directory in TensorRT-LLM is a mirror of an internal NVIDIA repository and maintains its own implementation and API that may diverge from the public `cutlass_kernels` version. API inconsistencies between these two directories are intentional and by design, not bugs to be fixed.
Learnt from: nv-lschneider
Repo: NVIDIA/TensorRT-LLM PR: 7910
File: cpp/tensorrt_llm/kernels/nccl_device/multimem.h:20-30
Timestamp: 2025-09-23T15:13:48.819Z
Learning: TRT-LLM targets modern CUDA toolkits that support FP8 datatypes, so cuda_fp8.h can be included unconditionally without version guards in TRT-LLM code.
Learnt from: nv-lschneider
Repo: NVIDIA/TensorRT-LLM PR: 7910
File: cpp/tensorrt_llm/thop/allreduceOp.cpp:352-446
Timestamp: 2025-09-23T15:12:38.312Z
Learning: In TensorRT-LLM NCCL device implementation, NCCL version 2.28+ requirements are handled at runtime in the nccl_device/config layer rather than with compile-time guards. This allows the allreduceOp to remain version-agnostic and delegates version compatibility validation to the appropriate lower-level components that can gracefully handle unsupported configurations.
📚 Learning: 2025-08-22T01:54:35.850Z
Learnt from: djns99
Repo: NVIDIA/TensorRT-LLM PR: 7104
File: cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h:999-1000
Timestamp: 2025-08-22T01:54:35.850Z
Learning: The `internal_cutlass_kernels` directory in TensorRT-LLM is a mirror of an internal NVIDIA repository and maintains its own implementation and API that may diverge from the public `cutlass_kernels` version. API inconsistencies between these two directories are intentional and by design, not bugs to be fixed.

Applied to files:

  • tensorrt_llm/_torch/attention_backend/trtllm.py
📚 Learning: 2025-11-14T11:22:03.729Z
Learnt from: nzmora-nvidia
Repo: NVIDIA/TensorRT-LLM PR: 9163
File: tensorrt_llm/_torch/auto_deploy/custom_ops/quant.py:107-113
Timestamp: 2025-11-14T11:22:03.729Z
Learning: In TensorRT-LLM AutoDeploy custom ops, when adding hardware capability checks to select between kernel implementations (e.g., cuBLAS vs. CUDA kernel), use descriptive variable names that identify the specific GPU architectures or families being targeted (e.g., `is_blackwell_geforce_or_ada`) rather than generic names like `enable_cuda_core`. This makes it clear that the code is selecting an implementation path based on hardware capabilities, not enabling/disabling hardware features.

Applied to files:

  • tensorrt_llm/_torch/attention_backend/trtllm.py
📚 Learning: 2025-09-23T15:12:38.312Z
Learnt from: nv-lschneider
Repo: NVIDIA/TensorRT-LLM PR: 7910
File: cpp/tensorrt_llm/thop/allreduceOp.cpp:352-446
Timestamp: 2025-09-23T15:12:38.312Z
Learning: In TensorRT-LLM NCCL device implementation, NCCL version 2.28+ requirements are handled at runtime in the nccl_device/config layer rather than with compile-time guards. This allows the allreduceOp to remain version-agnostic and delegates version compatibility validation to the appropriate lower-level components that can gracefully handle unsupported configurations.

Applied to files:

  • tensorrt_llm/_torch/attention_backend/trtllm.py
📚 Learning: 2025-08-14T15:43:23.107Z
Learnt from: MatthiasKohl
Repo: NVIDIA/TensorRT-LLM PR: 6904
File: tensorrt_llm/_torch/attention_backend/trtllm.py:259-262
Timestamp: 2025-08-14T15:43:23.107Z
Learning: In TensorRT-LLM's attention backend, tensor parameters in the plan() method are assigned directly without validation (dtype, device, contiguity checks). This maintains consistency across all tensor inputs and follows the pattern of trusting callers to provide correctly formatted tensors.

Applied to files:

  • tensorrt_llm/_torch/attention_backend/trtllm.py
📚 Learning: 2025-08-15T06:46:53.813Z
Learnt from: eopXD
Repo: NVIDIA/TensorRT-LLM PR: 6767
File: cpp/tensorrt_llm/batch_manager/kvCacheManager.cpp:0-0
Timestamp: 2025-08-15T06:46:53.813Z
Learning: In the TensorRT-LLM KV cache manager, SWA (Sliding Window Attention) combined with beam search is currently in a broken/non-functional state and is planned for future rework. During preparatory refactoring phases, code related to SWA+beam search may intentionally remain in a non-working state until the broader rework is completed.

Applied to files:

  • tensorrt_llm/_torch/attention_backend/trtllm.py
⏰ Context from checks skipped due to timeout of 90000ms. You can increase the timeout in your CodeRabbit configuration to a maximum of 15 minutes (900000ms). (1)
  • GitHub Check: Pre-commit Check

@tensorrt-cicd
Copy link
Collaborator

PR_Github #27354 [ run ] triggered by Bot. Commit: b5a65b6

Copy link
Collaborator

@brb-nv brb-nv left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LGTM.

@jhaotingc
Copy link
Collaborator Author

/bot skip --comment "unblock pre-merge"

@tensorrt-cicd
Copy link
Collaborator

PR_Github #27356 [ skip ] triggered by Bot. Commit: b5a65b6

@tensorrt-cicd
Copy link
Collaborator

PR_Github #27354 [ run ] completed with state ABORTED. Commit: b5a65b6
LLM/main/L0_MergeRequest_PR #20898 (Blue Ocean) completed with status: ABORTED

@jhaotingc
Copy link
Collaborator Author

waiting for PR_Github #27356

@tensorrt-cicd
Copy link
Collaborator

PR_Github #27356 [ skip ] completed with state SUCCESS. Commit: b5a65b6
Skipping testing for commit b5a65b6

@jhaotingc jhaotingc merged commit da074be into NVIDIA:main Dec 8, 2025
15 of 22 checks passed
jhaotingc added a commit to jhaotingc/TensorRT-LLM that referenced this pull request Dec 9, 2025
jhaotingc added a commit to jhaotingc/TensorRT-LLM that referenced this pull request Dec 9, 2025
…error (NVIDIA#9804)"

This reverts commit da074be.

Signed-off-by: Jhao-Ting Chen <[email protected]>
usberkeley pushed a commit to usberkeley/TensorRT-LLM that referenced this pull request Dec 11, 2025
codego7250 pushed a commit to codego7250/TensorRT-LLM that referenced this pull request Dec 11, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

3 participants