Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
382 changes: 382 additions & 0 deletions cpp/tensorrt_llm/kernels/renormMoeRoutingKernels.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,382 @@
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#include "tensorrt_llm/common/cudaTypeUtils.cuh"
#include "tensorrt_llm/common/envUtils.h"
#include "tensorrt_llm/kernels/renormMoeRoutingKernels.h"
#include <climits> // For INT_MAX
#include <cooperative_groups.h>
#include <cooperative_groups/reduce.h>
#include <cub/cub.cuh>
#include <cuda/std/limits> // For numeric_limits
#include <math.h>

namespace cg = cooperative_groups;
using namespace tensorrt_llm::common;

namespace tensorrt_llm::kernels
{

static constexpr int BLOCK_SIZE = 1024;
static constexpr int WARP_SIZE = 32;
static constexpr int WARPS_PER_BLOCK = BLOCK_SIZE / WARP_SIZE;

namespace reduce_topk
{

#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ == 1000 && defined(__CUDA_ARCH_FEAT_SM100_ALL))
#define TLLM_GEN_ENABLE_FAST_REDUX
#endif

template <typename T_>
struct TopKRedType
{
using T = T_;
static_assert(std::is_same_v<T, float> || std::is_same_v<T, half> || std::is_same_v<T, __nv_bfloat16>,
"Top K reduction only implemented for float, float16 and bfloat16");

using TypeCmp = std::conditional_t<sizeof(T) == 4, uint64_t, uint32_t>;
using IdxT = std::conditional_t<sizeof(T) == 4, int32_t, int16_t>;
static constexpr int moveBits = (sizeof(T) == 4) ? 32 : 16;
static constexpr int maxIdx = 65535;
TypeCmp compValIdx;

static __host__ __device__ inline TypeCmp makeCmpVal(T val, int32_t idx = 0)
{
auto valueBits = cub::Traits<T>::TwiddleIn(reinterpret_cast<typename cub::Traits<T>::UnsignedBits&>(val));
TypeCmp compactTmp = reinterpret_cast<TypeCmp&>(valueBits);
compactTmp = (compactTmp << moveBits) | (0xFFFF & (maxIdx - idx));
// Use 65535 minus idx to give higher priority to elements with smaller indices.
return compactTmp;
}

static __host__ __device__ void unpack(T& value, int32_t& index, TypeCmp cmp)
{
// Since “65535-idx” is always smaller than 65536 and positive, we can directly use it as the lower 16 bits
index = maxIdx - static_cast<int32_t>((cmp & 0xFFFF));

auto compactTmp = cmp >> moveBits;
auto valueBits
= cub::Traits<T>::TwiddleOut(reinterpret_cast<typename cub::Traits<T>::UnsignedBits&>(compactTmp));
value = reinterpret_cast<T&>(valueBits);
}

__host__ __device__ TopKRedType() = default;

__host__ __device__ TopKRedType(T val, int32_t idx)
: compValIdx(makeCmpVal(val, idx))
{
}

__host__ __device__ operator TypeCmp() const noexcept
{
return compValIdx;
}

__device__ inline TypeCmp reduce(cg::thread_block_tile<WARP_SIZE> const& warp)
{
#if defined(TLLM_GEN_ENABLE_FAST_REDUX)
static constexpr bool UseCg = false;
#else
static constexpr bool UseCg = true;
#endif
if constexpr (UseCg || sizeof(TypeCmp) == 8)
{
return cg::reduce(warp, compValIdx, cg::greater<TypeCmp>{});
}
else
{
TypeCmp result;
asm("redux.sync.max.u32 %0, %1, 0xffffffff;\n" : "=r"(result) : "r"(compValIdx));
return result;
}
}
};

////////////////////////////////////////////////////////////////////////////////////////////////////

template <int K_, bool Enable_>
struct TopKIdx
{
// by default, empty
};

template <int K_>
struct TopKIdx<K_, true>
{
static constexpr int K = K_;
int32_t val[K];
};

////////////////////////////////////////////////////////////////////////////////////////////////////

#define TOPK_SWAP(I, J) \
{ \
auto pairMin = min(topK[I].compValIdx, topK[J].compValIdx); \
auto pairMax = max(topK[I].compValIdx, topK[J].compValIdx); \
topK[I].compValIdx = pairMax; \
topK[J].compValIdx = pairMin; \
}

template <int N, typename RedType>
struct Sort;

template <typename RedType>
struct Sort<1, RedType>
{
static __device__ void run(RedType* topK) {}
};

template <typename RedType>
struct Sort<2, RedType>
{
static __device__ void run(RedType* topK)
{
TOPK_SWAP(0, 1);
}
};

template <typename RedType>
struct Sort<3, RedType>
{
static __device__ void run(RedType* topK)
{
TOPK_SWAP(0, 1);
TOPK_SWAP(1, 2);
TOPK_SWAP(0, 1);
}
};

template <typename RedType>
struct Sort<4, RedType>
{
static __device__ void run(RedType* topK)
{
TOPK_SWAP(0, 2);
TOPK_SWAP(1, 3);
TOPK_SWAP(0, 1);
TOPK_SWAP(2, 3);
TOPK_SWAP(1, 2);
}
};

template <int K, typename Type, int N, bool IsSorted = false>
__device__ void reduceTopK(cg::thread_block_tile<WARP_SIZE> const& warp, Type (&out)[K], int32_t (&outIdx)[K],
Type (&value)[N], int32_t (&idx)[N], Type minValue)
{
static_assert(K > 0, "Top K must have K > 0");
static_assert(K < WARP_SIZE, "Top K must have K < WARP_SIZE");
static_assert(N > 0, "Top K must have N > 0");
static_assert(N < 5, "Only support candidates number less than or equal to 128");
using RedType = TopKRedType<Type>;
RedType topK[N];
#pragma unroll
for (int nn = 0; nn < N; ++nn)
{
topK[nn] = RedType{value[nn], idx[nn]};
}

if constexpr (!IsSorted)
{
Sort<N, RedType>::run(topK);
}
typename RedType::TypeCmp packedMax{};
#pragma unroll
for (int kk = 0; kk < K; ++kk)
{
bool update = kk > 0 && packedMax == topK[0].compValIdx;
#pragma unroll
for (int nn = 0; nn < N; ++nn)
{
topK[nn] = update && nn == N - 1 ? RedType{minValue, idx[nn]} : update ? topK[nn + 1] : topK[nn];
}
// get the next largest value
packedMax = topK[0].reduce(warp);
RedType::unpack(out[kk], outIdx[kk], packedMax);
}
};

#undef TOPK_SWAP

} // end of namespace reduce_topk

////////////////////////////////////////////////////////////////////////////////////////////////////

template <typename T>
__device__ T calcSoftmax(cg::thread_block_tile<WARP_SIZE> const& warp, T score, int32_t laneIdx, int32_t NumTopExperts)
{
T maxScore = T{-INFINITY};
if (laneIdx < NumTopExperts)
{
maxScore = score >= maxScore ? score : maxScore;
}
maxScore = cg::reduce(warp, maxScore, cg::greater<T>());

float sumScore = float{0.f};
float newScore;
// Get the summation of scores for each token
if (laneIdx < NumTopExperts)
{
newScore = static_cast<float>(score) - static_cast<float>(maxScore);
newScore = static_cast<float>(exp(newScore));
sumScore += newScore;
}
sumScore = cg::reduce(warp, sumScore, cg::plus<float>());

if (laneIdx < NumTopExperts)
{
score = static_cast<T>(newScore / sumScore);
}

return score;
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template <typename InputT, typename OutputT, typename IdxT, int MaxNumExperts, int MaxNumTopExperts>
__global__ void renormMoeRoutingKernel(InputT* routerLogits, OutputT* topkValues, IdxT* topkIndices,
int32_t const numTokens, int32_t const numExperts, int32_t const topK)
{

uint32_t const blockRank = blockIdx.x;
uint32_t const tIdx = BLOCK_SIZE * blockRank + threadIdx.x;
uint32_t const warpIdx = tIdx / WARP_SIZE;
uint32_t const laneIdx = tIdx % WARP_SIZE;
uint32_t const warpNum = gridDim.x * WARPS_PER_BLOCK;
auto block = cg::this_thread_block();
auto warp = cg::tiled_partition<WARP_SIZE>(block);

InputT minScore = InputT{-INFINITY};
for (uint32_t tokenId = warpIdx; tokenId < numTokens; tokenId += warpNum)
{
auto scoreOffset = tokenId * numExperts;
auto outputOffset = tokenId * topK;
InputT inputScore[MaxNumExperts / WARP_SIZE];
IdxT inputIndex[MaxNumExperts / WARP_SIZE];

InputT warpTopKScore[MaxNumTopExperts];
IdxT warpTopKExpertIdx[MaxNumTopExperts];

// Load scores and indices for this warp
for (uint32_t i = 0; i < MaxNumExperts / WARP_SIZE; ++i)
{
auto expertIdx = i * WARP_SIZE + laneIdx;
inputScore[i]
= expertIdx < numExperts ? static_cast<InputT>(routerLogits[scoreOffset + expertIdx]) : minScore;
inputIndex[i] = expertIdx;
}

// Reduce topK scores and indices for this warp
reduce_topk::reduceTopK(warp, warpTopKScore, warpTopKExpertIdx, inputScore, inputIndex, minScore);

// Perform softmax on topK scores
auto score = calcSoftmax(warp,
laneIdx < topK ? static_cast<float>(warpTopKScore[laneIdx]) : static_cast<float>(minScore), laneIdx, topK);
if (laneIdx < topK)
{
topkValues[outputOffset + laneIdx] = static_cast<OutputT>(score);
topkIndices[outputOffset + laneIdx] = warpTopKExpertIdx[laneIdx];
}
} // end for tokenId
}

int nextPowerOfTwo(int num)
{
if (num <= 0)
{
return 1; // Handle invalid input
}
int power = 1;
while (power < num)
{
// Check for overflow before shifting
if (power > INT_MAX / 2)
{
return power;
}
power <<= 1;
}
return power;
}

#define CASE(MAX_NUM_EXPERTS) \
case MAX_NUM_EXPERTS: \
switch (maxNumTopExperts) \
{ \
case 1: kernelInstance = &renormMoeRoutingKernel<InputT, OutputT, IdxT, MAX_NUM_EXPERTS, 1>; break; \
case 2: kernelInstance = &renormMoeRoutingKernel<InputT, OutputT, IdxT, MAX_NUM_EXPERTS, 2>; break; \
case 4: kernelInstance = &renormMoeRoutingKernel<InputT, OutputT, IdxT, MAX_NUM_EXPERTS, 4>; break; \
case 8: kernelInstance = &renormMoeRoutingKernel<InputT, OutputT, IdxT, MAX_NUM_EXPERTS, 8>; break; \
default: kernelInstance = nullptr; break; \
} \
break;

template <typename InputT, typename OutputT, typename IdxT>
void invokeRenormMoeRouting(InputT* routerLogits, OutputT* topkValues, IdxT* topkIndices, int64_t const numTokens,
int64_t const numExperts, int64_t const topK, cudaStream_t const stream)
{

const uint32_t maxNumBlocks = 1024;
const uint32_t numBlocks = std::min(static_cast<uint32_t>((numTokens - 1) / WARPS_PER_BLOCK + 1), maxNumBlocks);

uint32_t maxNumExperts = nextPowerOfTwo(numExperts) < 32 ? 32 : nextPowerOfTwo(numExperts);
uint32_t maxNumTopExperts = nextPowerOfTwo(topK);

auto* kernelInstance = &renormMoeRoutingKernel<InputT, OutputT, IdxT, 128, 8>;

switch (maxNumExperts)
{
CASE(32)
CASE(64)
CASE(96)
CASE(128)
default: kernelInstance = nullptr; break;
}

if (kernelInstance == nullptr)
{
TLLM_CHECK_WITH_INFO(kernelInstance != nullptr, "Can not find corresponding kernel instance.");
}

dim3 renormMoeRoutingGridDim(numBlocks);
dim3 renormMoeRoutingBlockDim(BLOCK_SIZE);
cudaLaunchConfig_t config;
config.gridDim = renormMoeRoutingGridDim;
config.blockDim = renormMoeRoutingBlockDim;
config.dynamicSmemBytes = 0;
config.stream = stream;
cudaLaunchAttribute attrs[1];
attrs[0].id = cudaLaunchAttributeProgrammaticStreamSerialization;
attrs[0].val.programmaticStreamSerializationAllowed = tensorrt_llm::common::getEnvEnablePDL();
config.numAttrs = 1;
config.attrs = attrs;
cudaLaunchKernelEx(&config, kernelInstance, routerLogits, topkValues, topkIndices, static_cast<int32_t>(numTokens),
static_cast<int32_t>(numExperts), static_cast<int32_t>(topK));
sync_check_cuda_error(stream);
}

#define INSTANTIATE_RENORM_MOE_ROUTING(InputT, OutputT, IdxT) \
template void invokeRenormMoeRouting<InputT, OutputT, IdxT>(InputT * routerLogits, OutputT * topkValues, \
IdxT * topkIndices, int64_t const numTokens, int64_t const numExperts, int64_t const topK, \
cudaStream_t const stream);

INSTANTIATE_RENORM_MOE_ROUTING(float, float, int32_t);
INSTANTIATE_RENORM_MOE_ROUTING(half, float, int32_t);
#ifdef ENABLE_BF16
INSTANTIATE_RENORM_MOE_ROUTING(__nv_bfloat16, float, int32_t);
#endif

} // namespace tensorrt_llm::kernels
Loading