Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 5 additions & 5 deletions examples/03-Exploring-different-models.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -557,7 +557,7 @@
],
"source": [
"%%time\n",
"opt = tf.keras.optimizers.Adagrad(learning_rate=LR)\n",
"opt = tf.keras.optimizers.legacy.Adagrad(learning_rate=LR)\n",
"model.compile(optimizer=opt, run_eagerly=False, metrics=[tf.keras.metrics.AUC()])\n",
"model.fit(train, validation_data=valid, batch_size=batch_size)"
]
Expand Down Expand Up @@ -742,7 +742,7 @@
"source": [
"%%time\n",
"\n",
"opt = tf.keras.optimizers.Adagrad(learning_rate=LR)\n",
"opt = tf.keras.optimizers.legacy.Adagrad(learning_rate=LR)\n",
"model.compile(optimizer=opt, run_eagerly=False, metrics=[tf.keras.metrics.AUC(name=\"auc\")])\n",
"model.fit(train, validation_data=valid, batch_size=batch_size)"
]
Expand Down Expand Up @@ -1003,7 +1003,7 @@
],
"source": [
"%%time\n",
"opt = tf.keras.optimizers.Adagrad(learning_rate=LR)\n",
"opt = tf.keras.optimizers.legacy.Adagrad(learning_rate=LR)\n",
"model.compile(optimizer=opt, run_eagerly=False, metrics=[tf.keras.metrics.AUC(name=\"auc\")])\n",
"model.fit(train, validation_data=valid, batch_size=batch_size)"
]
Expand Down Expand Up @@ -1147,7 +1147,7 @@
],
"source": [
"%%time\n",
"opt = tf.keras.optimizers.Adagrad(learning_rate=LR)\n",
"opt = tf.keras.optimizers.legacy.Adagrad(learning_rate=LR)\n",
"model.compile(optimizer=opt, run_eagerly=False, metrics=[tf.keras.metrics.AUC(name=\"auc\")])\n",
"model.fit(train, validation_data=valid, batch_size=batch_size)"
]
Expand Down Expand Up @@ -1298,7 +1298,7 @@
],
"source": [
"%%time\n",
"opt = tf.keras.optimizers.Adagrad(learning_rate=LR)\n",
"opt = tf.keras.optimizers.legacy.Adagrad(learning_rate=LR)\n",
"model.compile(optimizer=opt, run_eagerly=False, metrics=[tf.keras.metrics.AUC(name=\"auc\")])\n",
"model.fit(train, validation_data=valid, batch_size=batch_size)"
]
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -584,7 +584,7 @@
],
"source": [
"%%time\n",
"opt = tf.keras.optimizers.Adagrad(learning_rate=1e-1)\n",
"opt = tf.keras.optimizers.legacy.Adagrad(learning_rate=1e-1)\n",
"model.compile(optimizer=opt, run_eagerly=False, metrics=[tf.keras.metrics.AUC()])"
]
},
Expand Down
6 changes: 3 additions & 3 deletions examples/usecases/multi-gpu-data-parallel-training.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -218,8 +218,8 @@
"name": "stdout",
"output_type": "stream",
"text": [
"_file_list.txt\t_metadata.json\tpart_1.parquet\r\n",
"_metadata\tpart_0.parquet\tschema.pbtxt\r\n"
"_file_list.txt\t_metadata.json\tpart_1.parquet\n",
"_metadata\tpart_0.parquet\tschema.pbtxt\n"
]
}
],
Expand Down Expand Up @@ -352,7 +352,7 @@
" prediction_tasks=mm.BinaryOutput(target_column),\n",
")\n",
"\n",
"opt = tf.keras.optimizers.Adagrad(learning_rate=0.01)\n",
"opt = tf.keras.optimizers.legacy.Adagrad(learning_rate=0.01)\n",
"model.compile(optimizer=opt, run_eagerly=False, metrics=[tf.keras.metrics.AUC()])\n",
"losses = model.fit(\n",
" train_loader\n",
Expand Down
2 changes: 1 addition & 1 deletion merlin/models/tf/blocks/optimizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -90,7 +90,7 @@ class MultiOptimizer(keras_optimizers.Optimizer):
model = ml.Model(three_tower, ml.BinaryClassificationTask("click"))

# The third_tower would be assigned the default_optimizer ("adagrad" in this example)
optimizer = ml.MultiOptimizer(default_optimizer="adagrad",
optimizer = ml.MultiOptimizer(default_optimizer=tf.keras.optimizers.legacy.Adagrad(),
optimizers_and_blocks=[
ml.OptimizerBlocks(tf.keras.optimizers.legacy.SGD(), user_tower),
ml.OptimizerBlocks(tf.keras.optimizers.legacy.Adam(), item_tower),
Expand Down
8 changes: 5 additions & 3 deletions merlin/models/tf/models/ranking.py
Original file line number Diff line number Diff line change
Expand Up @@ -437,11 +437,13 @@ def WideAndDeepModel(
deep_model = model.blocks[0].parallel_layers["deep"]

multi_optimizer = ml.MultiOptimizer(
default_optimizer="adagrad",
default_optimizer=tf.keras.optimizers.legacy.Adagrad(learning_rate=0.001),
optimizers_and_blocks=[
ml.OptimizerBlocks("ftrl", wide_model),
ml.OptimizerBlocks("adagrad", deep_model),
],
ml.OptimizerBlocks(
tf.keras.optimizers.legacy.Adagrad(learning_rate=0.001), deep_model
),
],
)
```

Expand Down
2 changes: 1 addition & 1 deletion tests/common/tf/retrieval/retrieval_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -493,7 +493,7 @@ def get_optimizer(
clipvalue=opt_clip_value,
)
elif optimizer == "adagrad":
opt = tf.keras.optimizers.Adagrad(
opt = tf.keras.optimizers.legacy.Adagrad(
learning_rate=lerning_rate,
clipnorm=opt_clip_norm,
clipvalue=opt_clip_value,
Expand Down
4 changes: 2 additions & 2 deletions tests/unit/tf/models/test_ranking.py
Original file line number Diff line number Diff line change
Expand Up @@ -466,10 +466,10 @@ def test_wide_deep_model_wide_feature_interaction_multi_optimizer(ecommerce_data
deep_model = model.blocks[0].parallel_layers["deep"]

multi_optimizer = mm.MultiOptimizer(
default_optimizer="adagrad",
default_optimizer=tf.keras.optimizers.legacy.Adagrad(learning_rate=0.001),
optimizers_and_blocks=[
mm.OptimizerBlocks("ftrl", wide_model),
mm.OptimizerBlocks("adagrad", deep_model),
mm.OptimizerBlocks(tf.keras.optimizers.legacy.Adagrad(learning_rate=0.001), deep_model),
],
)
testing_utils.model_test(
Expand Down