-
Imported libraries
-
Captured the background for 3 seconds and saved it in a variable.
-
Captured the video feed and converted it to HSV
-
Setting value for red color and then made a mask for it
-
Combining two layers/masks so that it can be viewed as one frame
-
After combining we will store it in default mask
#importing libraries
import numpy as np
import cv2
import time
cap = cv2.VideoCapture(0)
time.sleep(2)
background = 0
#capturing the background
for i in range(50):
ret, background = cap.read()
#capturing the video feed and converitng img/background to hsv
while(cap.isOpened()):
ret, img = cap.read()
if not ret:
break
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
#setting the value for cloak and removing the color and making mask
lower_red = np.array([0,120,70])
upper_red = np.array([10,255,255]) # value is for red color cloth
mask1 = cv2.inRange(hsv, lower_red, upper_red)
lower_red = np.array([170,120,70])
upper_red = np.array([180,255,255])
mask2 = cv2.inRange(hsv, lower_red, upper_red)
#combining the two masks so that it can be viewed as one frame
mask1 = mask1+mask2
#after we are done with combining we will store it in the default mask
mask1 = cv2.morphologyEx(mask1, cv2.MORPH_OPEN, np.ones((3,3), np.uint8), iterations = 2)
mask1 = cv2.morphologyEx(mask1, cv2.MORPH_DILATE, np.ones((3,3), np.uint8), iterations = 1)
mask2 = cv2.bitwise_not(mask1)
res1 = cv2.bitwise_and(background,background,mask=mask1)
#basic work of bitwise_and is to combine the background and store it in res1
res2 = cv2.bitwise_and(img,img,mask=mask2)
final_output = cv2.addWeighted(res1,1,res2,1,0)
cv2.imshow('Invisible cloak', final_output)
k = cv2.waitKey(10)
if k==27:
break
cap.release()
cv2.destroyAllWindows()