Skip to content

This is an AI virtual mouse built using libraries and functions like OpenCV Numpy mediapipe etc. I have created a hand tracking module in which i have already described how it will track our hand , by using my module i have defined the location of Index finger and middle finger.

Notifications You must be signed in to change notification settings

Mario263/AI-Virtual-Mouse-Using-OpenCv

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AI Virtual Mouse Using OpenCv

This is an AI virtual mouse built using libraries and functions like OpenCV Numpy mediapipe etc. I have created a hand tracking module in which i have already described how it will track our hand , by using my module i have defined the location of Index finger and middle finger.

"""project owned by :- Abhishek Sharma

Hand Tracking Module owned by :- Abhishek Sharma """

AI Virtual mouse main module

            import cv2
            import numpy as np
            import HandTrackingModule as htm
            import time
            import autopy

         #####################
         wCam, Hcam = 640, 480
         frameR = 20 # frame reduction
         smoothening = 3

         #####################

         plocX, PlocY = 0,0
         clocX, clocY = 0,0

         cap = cv2.VideoCapture(0)
         cap.set(3, wCam)
         cap.set(4, Hcam)
         pTime = 0
         detector = htm.handDetector(maxHands=1)
         wScr, hScr = autopy.screen.size()
         #print(wScr, hScr)
         while True:
             # 1. to find the hand landmarks
             success, img = cap.read()
             img = detector.findHands(img)
             lmList, bbox = detector.findPosition(img)
             # 2. Get the tip of the index and middle finger
             if len(lmList)!=0:
                 x1, y1 = lmList[8][1:]
                 x2, y2 = lmList[12][1:]
             # 3. check which fingers are up
                 fingers = detector.fingersUp()
                 cv2.rectangle(img, (frameR, frameR), (wCam - frameR, Hcam - frameR), (255, 0, 255), 2)
                 #print(fingers)
                 # 4. only index finger : it is in moving mode
                 if fingers[1]==1 and fingers[2]==0:

                     # 5. Convert coordinates

                     x3 = np.interp(x1, (frameR, wCam-frameR), (0, wScr))
                     y3 = np.interp(y1, (frameR, Hcam-frameR), (0, hScr))
                     # 6. Smoothen Values
                     clocX = plocX + (x3 - plocX) / smoothening
                     clocY = PlocY + (y3 - PlocY) / smoothening
                     # 7. Move Mouse
                     autopy.mouse.move(wScr-clocX, clocY)
                     cv2.circle(img, (x1, y1), 15, (255, 0, 0), cv2.FILLED)
                     plocX, PlocY = clocX, clocY
                # 8. Both middle and index fingers are up : Clicking mode
                if fingers[1] == 1 and fingers[2] == 1:
                    length, img, lineInfo = detector.findDistance(8, 12, img)
                    print(length)
                    # 9. Find Distance between fingers
                    if length < 45:
                        cv2.circle(img, (lineInfo[4], lineInfo[5]), 15, (0, 255, 0), cv2.FILLED)
                        # 10. click mouse if distance short
                        autopy.mouse.click()



             # 11. frame rate
             cTime = time.time()
             fps = 1/(cTime-pTime)
             pTime = cTime
             cv2.putText(img, str(int(fps)), (20, 50), cv2.FONT_HERSHEY_PLAIN, 3, (255, 0, 0), 3)
             # 12. Display
             cv2.imshow("Image", img)
             cv2.waitKey(1)

Hand Tracking Module

"""project owned by :- Abhishek Sharma

Hand Tracking Module owned by :- Abhishek Sharma """

       import cv2
       import mediapipe as mp
       import time
       import math
       import numpy as np


       class handDetector():
           def __init__(self, mode=False, maxHands=2, detectionCon=0.5, trackCon=0.5):
               self.mode = mode
               self.maxHands = maxHands
               self.detectionCon = detectionCon
               self.trackCon = trackCon

               self.mpHands = mp.solutions.hands
               self.hands = self.mpHands.Hands(self.mode, self.maxHands,
                                               self.detectionCon, self.trackCon)
               self.mpDraw = mp.solutions.drawing_utils
               self.tipIds = [4, 8, 12, 16, 20]

           def findHands(self, img, draw=True):
               imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
               self.results = self.hands.process(imgRGB)
               # print(results.multi_hand_landmarks)

               if self.results.multi_hand_landmarks:
                   for handLms in self.results.multi_hand_landmarks:
                       if draw:
                           self.mpDraw.draw_landmarks(img, handLms,
                                                      self.mpHands.HAND_CONNECTIONS)

               return img

           def findPosition(self, img, handNo=0, draw=True):
               xList = []
               yList = []
               bbox = []
               self.lmList = []
               if self.results.multi_hand_landmarks:
                   myHand = self.results.multi_hand_landmarks[handNo]
                   for id, lm in enumerate(myHand.landmark):
                       # print(id, lm)
                       h, w, c = img.shape
                       cx, cy = int(lm.x * w), int(lm.y * h)
                       xList.append(cx)
                       yList.append(cy)
                       # print(id, cx, cy)
                       self.lmList.append([id, cx, cy])
                       if draw:
                           cv2.circle(img, (cx, cy), 5, (255, 0, 255), cv2.FILLED)

                   xmin, xmax = min(xList), max(xList)
                   ymin, ymax = min(yList), max(yList)
                   bbox = xmin, ymin, xmax, ymax

                   if draw:
                       cv2.rectangle(img, (xmin - 20, ymin - 20), (xmax + 20, ymax + 20),
                                     (0, 255, 0), 2)

               return self.lmList, bbox

           def fingersUp(self):
               fingers = []
               # Thumb
               if self.lmList[self.tipIds[0]][1] > self.lmList[self.tipIds[0] - 1][1]:
                   fingers.append(1)
               else:
                   fingers.append(0)

               # Fingers
               for id in range(1, 5):

                   if self.lmList[self.tipIds[id]][2] < self.lmList[self.tipIds[id] - 2][2]:
                       fingers.append(1)
                   else:
                       fingers.append(0)

               # totalFingers = fingers.count(1)

               return fingers

           def findDistance(self, p1, p2, img, draw=True,r=15, t=3):
               x1, y1 = self.lmList[p1][1:]
               x2, y2 = self.lmList[p2][1:]
               cx, cy = (x1 + x2) // 2, (y1 + y2) // 2

               if draw:
                   cv2.line(img, (x1, y1), (x2, y2), (255, 0, 255), t)
                   cv2.circle(img, (x1, y1), r, (255, 0, 255), cv2.FILLED)
                   cv2.circle(img, (x2, y2), r, (255, 0, 255), cv2.FILLED)
                   cv2.circle(img, (cx, cy), r, (0, 0, 255), cv2.FILLED)
               length = math.hypot(x2 - x1, y2 - y1)

               return length, img, [x1, y1, x2, y2, cx, cy]


       def main():
           pTime = 0
           cTime = 0
           cap = cv2.VideoCapture(1)
           detector = handDetector()
           while True:
               success, img = cap.read()
               img = detector.findHands(img)
               lmList, bbox = detector.findPosition(img)
               if len(lmList) != 0:
                   print(lmList[4])

               cTime = time.time()
               fps = 1 / (cTime - pTime)
               pTime = cTime

               cv2.putText(img, str(int(fps)), (10, 70), cv2.FONT_HERSHEY_PLAIN, 3,
                           (255, 0, 255), 3)

               cv2.imshow("Image", img)
               cv2.waitKey(1)


       if __name__ == "__main__":
           main()

About

This is an AI virtual mouse built using libraries and functions like OpenCV Numpy mediapipe etc. I have created a hand tracking module in which i have already described how it will track our hand , by using my module i have defined the location of Index finger and middle finger.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages