Skip to content

Add test for operator #2

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 4 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
34 changes: 34 additions & 0 deletions pytorch_imp/matmul.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
import torch

def matmul_trans(alpha, beta, A, B, C):
print("-----------------------matmul-------------------------")
print("input A = ")
print(A)
print("input B = ")
print(B)
print("input C = ")
print(C)

ABT = torch.matmul(A, B.T)
C = alpha * ABT + beta * C

print("C = ")
print(C)
print("-------------------------------------------------------")


# Same with the given test.
A = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], dtype=torch.float32)
B = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], dtype=torch.float32)
C = torch.tensor([[1.0, 2.0], [3.0, 4.0]], dtype=torch.float32)
alpha = 1.0
beta = 1.0

matmul_trans(alpha, beta, A, B, C)

# A random case
m, k, n = 2, 3, 4
A = torch.randn(m, k, dtype=torch.float32)
B = torch.randn(n, k, dtype=torch.float32)
C = torch.randn(m, n, dtype=torch.float32)
matmul_trans(alpha, beta, A, B, C)
34 changes: 34 additions & 0 deletions pytorch_imp/rms_norm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
import torch
def rms_norm(matrix, w, epsilon):
print("-----------------------rms_norm------------------------")
print("input = ")
print(matrix)
print(w)

last_dim_size = matrix.size(-1)

squares = torch.sum(matrix ** 2 , dim=-1, keepdim=True) / last_dim_size + epsilon
print("squares = ")
print(squares)

norm = torch.sqrt(squares)
print("norm = ")
print(norm)

y = (w * matrix) / norm
print("result = ")
print(y)
print("-------------------------------------------------------")


# Same with the given test.
matrix = torch.tensor([[1.0, 2.0], [3.0, 4.0]], dtype=torch.float32)
w = torch.tensor([1.0, 2.0], dtype=torch.float32)
epsilon = 1e-6
rms_norm(matrix, w, epsilon)

# A random example
matrix = torch.randn(2, 2, 3, 3, dtype=torch.float32)
w = torch.tensor([10., 12., 8.], dtype=torch.float32)
epsilon = 1e-6
rms_norm(matrix, w, epsilon)
24 changes: 24 additions & 0 deletions pytorch_imp/silu.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,24 @@
import torch

def silu(x, y):
print("-----------------------silu-------------------------")
print("input x = ")
print(x)
print("input y = ")
print(y)
sigmoid_x = torch.sigmoid(x)
y = sigmoid_x * x * y

print("result = ")
print(y)
print("----------------------------------------------------")

# Same with the given test.
x = torch.tensor([1.0, 2.0, 3.0])
y = torch.tensor([2.0, 3.0, 4.0])
silu(x, y)

# Same with the given test.
x = torch.randn(8, dtype=torch.float32)
y = torch.randn(8, dtype=torch.float32)
silu(x, y)
269 changes: 260 additions & 9 deletions src/operators.rs
Original file line number Diff line number Diff line change
Expand Up @@ -71,27 +71,71 @@ pub fn masked_softmax(y: &mut Tensor<f32>) {
}

pub fn rms_norm(y: &mut Tensor<f32>, x: &Tensor<f32>, w: &Tensor<f32>, epsilon: f32) {
todo!("实现 rms_norm,计算前做一些必要的检查会帮助你后续调试")
}
let shape = y.shape().clone();
let len = shape.len();
let last_dim = len - 1;
let _y = unsafe { y.data_mut() };
let _x = x.data();
let _w = w.data();

let mut ext_loop = 1;
for i in 0..(shape.len() - 1) {
ext_loop *= shape[i];
}
let inner_size = shape[last_dim];

for i in 0..ext_loop {
let mut xp = 0f32;
for j in 0..shape[last_dim] {
xp += _x[i * inner_size + j] * _x[i * inner_size + j];
_y[i * inner_size + j] = _w[j] * _x[i * inner_size + j];
}
xp = f32::sqrt(xp / inner_size as f32 + epsilon);
for j in 0..shape[last_dim] {
_y[i * inner_size + j] /= xp;
}
}
}
// y = sigmoid(x) * x * y
// hint: this is an element-wise operation
pub fn silu(y: &mut Tensor<f32>, x: &Tensor<f32>) {
// let len = y.size();
// assert!(len == x.size());
let len = y.size();
assert!(len == x.size());

// let _y = unsafe { y.data_mut() };
// let _x = x.data();
let _y = unsafe { y.data_mut() };
let _x = x.data();

todo!("实现 silu,这里给了一些前期准备工作的提示,你可以参考")
for i in 0..len {
_y[i] = _y[i] * _x[i] / (1f32 + f32::exp(-_x[i]));
}
}

// C = beta * C + alpha * A @ B^T
// hint: You don't need to do an explicit transpose of B
pub fn matmul_transb(c: &mut Tensor<f32>, beta: f32, a: &Tensor<f32>, b: &Tensor<f32>, alpha: f32) {
todo!("实现 matmul_transb,计算前做一些必要的检查会帮助你后续调试");
}
let shape_c = c.shape();
let (c_rows, c_cols) = (shape_c[0], shape_c[1]);
let inner = a.shape()[1];
let _c = unsafe { c.data_mut() };
let _a = a.data();
let _b = b.data();

// Scale c by beta
for val in _c.iter_mut() {
*val *= beta;
}

// Perform matrix multiplication
for x in 0..c_rows {
for y in 0..c_cols {
let mut sum = 0f32;
for k in 0..inner {
sum += _a[x * inner + k] * _b[y * inner + k];
}
_c[x * c_cols + y] += alpha * sum;
}
}
}
// Dot product of two tensors (treated as vectors)
#[allow(unused)]
pub fn dot(x: &Tensor<f32>, y: &Tensor<f32>) -> f32 {
Expand Down Expand Up @@ -198,6 +242,157 @@ fn test_rms_norm() {
));
}

#[test]
fn test_rms_norm_0() {
let mut y = Tensor::<f32>::new( vec![
1.3047, -1.9949, 0.5328,
0.7988, -0.0593, 0.3121,
], &vec![2, 3]);
let x = Tensor::<f32>::new( vec![
1.3047, -1.9949, 0.5328,
0.7988, -0.0593, 0.3121,
], &vec![2, 3]);

let w = Tensor::<f32>::new(vec![1., 2., 3.], &vec![3]);
rms_norm(&mut y, &x, &w, 1e-6);
assert!(y.close_to(
&Tensor::<f32>::new(
vec![
0.9252, -2.8293, 1.1336,
1.6095, -0.2390, 1.8862,
],
&vec![2, 3]
),
1e-3
));
}

#[test]
fn test_rms_norm_1() {
let mut y = Tensor::<f32>::new(vec![
-0.0338, -1.4320, -1.4298, -0.0493,
0.4963, 2.3341, 0.6086, 0.1502,
1.2347, -0.1080, -0.6381, -1.2577,
0.3982, 0.6274, 0.6667, -0.3212,
1.4439, -0.4832, 0.5520, 0.5102,
-1.1528, -1.3846, -2.4974, 1.3092,
-0.9207, -0.9543, -0.0921, -0.8487,
], &vec![7, 4]);
let x = Tensor::<f32>::new(vec![
-0.0338, -1.4320, -1.4298, -0.0493,
0.4963, 2.3341, 0.6086, 0.1502,
1.2347, -0.1080, -0.6381, -1.2577,
0.3982, 0.6274, 0.6667, -0.3212,
1.4439, -0.4832, 0.5520, 0.5102,
-1.1528, -1.3846, -2.4974, 1.3092,
-0.9207, -0.9543, -0.0921, -0.8487,
], &vec![7, 4]);

let w = Tensor::<f32>::new(vec![1., 2., 3., 4.], &vec![4]);
rms_norm(&mut y, &x, &w, 1e-6);
assert!(y.close_to(
&Tensor::<f32>::new(
vec![
-0.0334, -2.8294, -4.2375, -0.1949,
0.4023, 3.7842, 1.4800, 0.4870,
1.3153, -0.2301, -2.0390, -5.3590,
0.7594, 2.3930, 3.8144, -2.4499,
1.7006, -1.1383, 1.9505, 2.4039,
-0.6890, -1.6551, -4.4780, 3.1301,
-1.1675, -2.4206, -0.3503, -4.3052,
],
&vec![7, 4]
),
1e-3
));
}

#[test]
fn test_rms_norm_2() {
let mut y = Tensor::<f32>::new(vec![
-2.1117, 0.2419, 0.3274,
-2.6815, -0.5004, -0.5681,
0.6042, -0.3003, -0.0382,
-1.5544, -1.0339, -0.3826
], &vec![2, 2, 3]);
let x = Tensor::<f32>::new(vec![
-2.1117, 0.2419, 0.3274,
-2.6815, -0.5004, -0.5681,
0.6042, -0.3003, -0.0382,
-1.5544, -1.0339, -0.3826
], &vec![2, 2, 3]);

let w = Tensor::<f32>::new(vec![1., 2., 3.], &vec![3]);
rms_norm(&mut y, &x, &w, 1e-6);
assert!(y.close_to(
&Tensor::<f32>::new(
vec![
-1.7007, 0.3896, 0.7911,
-1.6669, -0.6221, -1.0594,
1.5486, -1.5393, -0.2937,
-1.4128, -1.8794, -1.0432,
],
&vec![2, 2, 3]
),
1e-3
));
}

#[test]
fn test_rms_norm_3() {
let mut y = Tensor::<f32>::new(vec![
-0.6739, 0.3571, -0.8788,
-1.2909, 1.1852, -1.2400,
0.5001, -0.3792, 0.5342,
1.0144, 0.8592, -0.2071,
0.3115, -0.2703, 0.9758,
-0.7850, 0.4510, -1.5042,
0.5577, -0.5024, 0.5586,
0.1071, 0.4731, -2.4975,
1.2519, -0.8391, 0.1562,
1.7349, 0.2805, -0.1348,
-1.3780, -1.0139, -0.3333,
-0.1251, 0.8297, 0.4957,
], &vec![2, 2, 3, 3]);
let x = Tensor::<f32>::new(vec![
-0.6739, 0.3571, -0.8788,
-1.2909, 1.1852, -1.2400,
0.5001, -0.3792, 0.5342,
1.0144, 0.8592, -0.2071,
0.3115, -0.2703, 0.9758,
-0.7850, 0.4510, -1.5042,
0.5577, -0.5024, 0.5586,
0.1071, 0.4731, -2.4975,
1.2519, -0.8391, 0.1562,
1.7349, 0.2805, -0.1348,
-1.3780, -1.0139, -0.3333,
-0.1251, 0.8297, 0.4957,
], &vec![2, 2, 3, 3]);

let w = Tensor::<f32>::new(vec![10., 12., 8.], &vec![3]);
rms_norm(&mut y, &x, &w, 1e-6);
assert!(y.close_to(
&Tensor::<f32>::new(
vec![
-10.0316, 6.3787, -10.4647,
-10.4149, 11.4752, -8.0034,
10.5095, -9.5639, 8.9810,
13.0592, 13.2734, -2.1326,
5.0921, -5.3039, 12.7633,
-7.7445, 5.3397, -11.8719,
10.3242, -11.1602, 8.2721,
0.7293, 3.8650, -13.6022,
14.3111, -11.5102, 1.4286,
17.0484, 3.3072, -1.0596,
-13.6936, -12.0906, -2.6495,
-2.2236, 17.6953, 7.0476,
],
&vec![2, 2, 3, 3]
),
1e-3
));
}

#[test]
fn test_matmul_transb() {
let mut c = Tensor::<f32>::new(vec![1., 2., 3., 4.], &vec![2, 2]);
Expand All @@ -209,3 +404,59 @@ fn test_matmul_transb() {
1e-3
));
}

#[test]
fn test_matmul_transb_0() {
let mut c = Tensor::<f32>::new(vec![
-0.8113, 1.8005, 1.4450, 0.5919,
0.4683, -1.2566, -1.1469, 0.2845,
], &vec![2, 4]);
let a = Tensor::<f32>::new(vec![
-0.7777, -0.8577, -0.3442,
1.1499, 0.6590, 0.5645,
], &vec![2, 3]);
let b = Tensor::<f32>::new(vec![
-0.1603, 0.1595, 1.0277,
-0.3535, -0.4132, 0.6107,
-0.9211, 0.0353, -0.2416,
-1.4986, -0.4596, -0.1550,
], &vec![3, 4]);
matmul_transb(&mut c, 2.43, &a, &b, 1.41);
assert!(c.close_to(
&Tensor::<f32>::new(vec![
-2.4874, 4.9662, 4.5959, 3.7126,
1.8443, -3.5247, -4.4398, -2.2889,
], &vec![2, 4]),
1e-3
));
}

#[test]
fn test_matmul_transb_1() {
let mut c = Tensor::<f32>::new(vec![
0.5959, -1.8501, -0.6161, 1.3742, -0.9042,
-0.6141, -1.2398, 1.2380, -1.1101, 1.2153,
-0.7181, 0.2656, -0.2232, 1.4864, 0.4870,
], &vec![3, 5]);
let a = Tensor::<f32>::new(vec![
0.6937, -0.7814, -0.5549, -0.4525, -1.2635,
2.0139, -1.2418, -0.9660, -0.0260, -0.5243,
0.6419, 0.4324, -0.8068, -1.3037, 0.0705,
], &vec![3, 5]);
let b = Tensor::<f32>::new(vec![
1.2066, -0.20014, -1.0151, -0.96161, -0.51317,
0.19607, 0.73423, -2.6455, -0.08325, -0.21335,
-0.51207, -1.6300, 0.61885, -0.92605, 1.1062,
0.85047, -1.0426, 0.51591, 1.3225, 0.0024804,
1.7679, -0.77657, -1.3297, 0.64967, 1.5565,
], &vec![5, 5]);
matmul_transb(&mut c, 0.2, &a, &b, 0.2);
assert!(c.close_to(
&Tensor::<f32>::new(vec![
0.6472, -0.1026, -0.2039, 0.3782, -0.1188,
0.6678, 0.1826, 0.2154, 0.2727, 1.2383,
0.4012, 0.5874, -0.0942, -0.1118, 0.3243,
], &vec![3, 5]),
1e-3
));
}