Core library for the KappaML project.
This library implements experimental online automated machine learning algorithms for the KappaML project.
from river.tree import HoeffdingTreeClassifier
from river.linear_model import LogisticRegression
from river.metrics import Accuracy
from kappaml_core.meta import MetaClassifier
# Create base models
models = [
HoeffdingTreeClassifier(weighted=True),
HoeffdingTreeClassifier(weighted=False),
LogisticRegression()
]
# Initialize meta-classifier
model = MetaClassifier(
models=models,
meta_learner=HoeffdingTreeClassifier(),
metric=Accuracy(),
mfe_groups=["general"],
window_size=200,
meta_update_frequency=50
)
for x, y in stream:
# Make prediction
y_pred = model.predict_one(x)
# Update the model
model.learn_one(x, y)
from river.linear_model import LinearRegression
from river.tree import HoeffdingTreeRegressor
from river.preprocessing import StandardScaler
from river.metrics import MAPE
from kappaml_core.meta import MetaRegressor
# Create base models
models = [
LinearRegression(),
StandardScaler() | LinearRegression(),
[LinearRegression(l2=l2) for l2 in range(0, 1, 0.1)],
HoeffdingTreeRegressor()
]
# Initialize meta-regressor
model = MetaRegressor(
models=models,
meta_learner=HoeffdingTreeClassifier(),
metric=MAPE(),
mfe_groups=["general"],
window_size=200,
meta_update_frequency=50
)
for x, y in stream:
# Make prediction
y_pred = model.predict_one(x)
# Update the model
model.learn_one(x, y)
This project has been set up using PyScaffold 4.1.4. For details and usage information on PyScaffold see https://pyscaffold.org/.