Skip to content

3D detection implementation of CVPR 2025 paper "Toward Real-world BEV Perception via Depth Uncertainty Estimation using Gaussian Splatting".

License

Notifications You must be signed in to change notification settings

HCIS-Lab/GaussianLSS-3D-Detection

Repository files navigation

GaussianLSS

A 3D detection extension for CVPR'25 paper:

[Paper] [Project page] [BEV segmentation]

Toward Real-world BEV Perception: Depth Uncertainty Estimation via Gaussian Splatting
Shu-Wei Lu, Yi-Hsuan Tsai, Yi-Ting Chen.
CVPR 2025

This implementation is modified from ICCV'23 paper - SparseBEV:

https://github.com/MCG-NJU/SparseBEV

Environment

Install PyTorch 2.0 + CUDA 11.8:

conda create -n GaussianLSS_det python=3.8
conda activate GaussianLSS_det
conda install pytorch==2.0.0 torchvision==0.15.0 pytorch-cuda=11.8 -c pytorch -c nvidia

Install other dependencies:

pip install openmim
mim install mmcv-full==1.6.0
mim install mmdet==2.28.2
mim install mmsegmentation==0.30.0
mim install mmdet3d==1.0.0rc6
pip install setuptools==59.5.0
pip install numpy==1.23.5

Install turbojpeg and pillow-simd to speed up data loading (optional but important):

sudo apt-get update
sudo apt-get install -y libturbojpeg
pip install pyturbojpeg
pip uninstall pillow
pip install pillow-simd==9.0.0.post1
pip install -r requirements.txt

Compile CUDA extensions:

cd models/diff-gaussian-rasterization
pip install -e .

Prepare Dataset

  1. Download nuScenes from https://www.nuscenes.org/nuscenes and put it in data/nuscenes.
  2. Download the generated info file from Google Drive and unzip it.
  3. Folder structure:
data/nuscenes
├── maps
├── nuscenes_infos_test_sweep.pkl
├── nuscenes_infos_train_sweep.pkl
├── nuscenes_infos_train_mini_sweep.pkl
├── nuscenes_infos_val_sweep.pkl
├── nuscenes_infos_val_mini_sweep.pkl
├── samples
├── sweeps
├── v1.0-test
└── v1.0-trainval

These *.pkl files can also be generated with our script: gen_sweep_info.py.

Training

Download pretrained weights and put it in directory pretrain/:

pretrain
├── cascade_mask_rcnn_r50_fpn_coco-20e_20e_nuim_20201009_124951-40963960.pth

Train GaussianLSS with 2 GPUs (i.e the last four GPUs):

export CUDA_VISIBLE_DEVICES=0,1
torchrun --nproc_per_node 2 train.py --config configs/r50_nuimg_704x256.py

The batch size for each GPU will be scaled automatically. So there is no need to modify the batch_size in config files.

Evaluation

Single-GPU evaluation:

export CUDA_VISIBLE_DEVICES=0
python val.py --config configs/r50_nuimg_704x256.py --weights {PATH_TO_WEGIHTS.pth}

Timing

FPS is measured with a single GPU:

export CUDA_VISIBLE_DEVICES=0
python timing.py --config configs/r50_nuimg_704x256.py --weights {PATH_TO_WEGIHTS.pth}

Visualization

Visualize the predicted bbox:

python viz_bbox_predictions.py --config configs/r50_nuimg_704x256.py --weights {PATH_TO_WEGIHTS.pth}

About

3D detection implementation of CVPR 2025 paper "Toward Real-world BEV Perception via Depth Uncertainty Estimation using Gaussian Splatting".

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published