Bubble Cleaner untuk manga menggunakan model YOLOv11-segmented, untuk inferensi yang lebih cepat dan ringan, selagi mempertahankan akurasi deteksi yang tinggi. GPU tidak diperlukan (CPU saja cukup!).
Bubble Cleaner for manga using the YOLOv11-segmented model, optimized for faster and lighter inference while maintaining high detection accuracy. A GPU isn't needed (Just CPU is enough!).
Untuk pemakaian, silakan download versi yang sudah di-Compile untuk CPU-only (Windows, .exe) di halaman Release. Download file .zip dibawah asset, ekstrak, lalu jalankan exe. Tunggu hingga teks yang meminta memasukkan input path muncul.
For usage, please download the pre-compiled CPU-only version (Windows, .exe) from the Release Page. Download the .zip file under the "Assets" section, extract it, and then run the .exe. Wait for the prompt asking for the input path to appear.
-
Create input and output directory.
-
Run program.
-
Enter input and output directory, and the Manga Panel to be processed.
-
Wait until finished, done.
This model isn't fully optimized for bubble detection and refining, so use it with a grain of salt. Unaccuracy is expected, so use it just as a helper, not to remove Cleaner role entirely.
- Ellipse / Bubble default
- Polygon
- Square / Narrative Dialogue
- Thorns / Shout (kurang dataset)
Training dilakukan di Google Colab menggunakan gpu T4, dengan epoch 200 (berhenti di epoch 54 karena tidak ada peningkatan).
Confusion Matrix
Sebaran Label/Dataset
Hasil Akhir
| iterasi epoch | train/box_loss | train/seg_loss | metrics/precision(B) | metrics/recall(B) | metrics/mAP50(B) | metrics/mAP50(M) |
|---|---|---|---|---|---|---|
| 54 | 0.2383 | 0.28144 | 0.86595 | 0.80737 | 0.82864 | 0.82972 |
Untuk hasil iterasi epochs secara lengkap dapat melihat pada link ini: https://drive.google.com/file/d/1lJIBTGtpXOicD8E6ZnQcW2NUkYRSgfY4/view?usp=drive_link
- Increase Dataset Variations
- Improve Post-processing, especially for joined bubble
Clone the project
git clone https://github.com/faralha/Bubble-Cleaner.gitGo to the project directory
cd Bubble-CleanerConfigure path
This file was imported from google collab, and all the training dataset and models were assumed stored in Drive. Change this accordingly.
For Training: Configure Dataset Path
For Inference: Configure Models Path
Run Notebook
- train.ipynb for Training Purposes, and
- inference.ipynb for Main Usage





