Skip to content

FBTCAD/SemiKong-LLM-Evaluation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SemiKong-LLM-Evaluation

Python framework for SemiKong evaluation

Overview

This repository contains the evaluation framework and datasets used to assess SemiKong, the first open-source Large Language Model (LLM) specifically designed for the semiconductor industry. The framework includes tools for dataset analysis, model inference testing, and performance evaluation.

Repository Structure

semikong-eval/
├── scripts/
│   ├── datatojson.py      # Dataset loading and conversion script
│   ├── indexsearch.py     # JSON search and analysis tool
│   └── SKEval.py          # SemiKong evaluation script
├── datasets/
│   ├── edatcad.json       # EDA/TCAD test cases
│   ├── tmscout.json       # Technical serach dataset
│   └── acronyms.json      # Semiconductor acronyms test cases
└── results/
    └── SKedatcad_short.txt    # Evaluation results

Setup and Configuration

  1. Configure the API settings in SKEval.py:
CONFIG = {
    "api_url": "http://your-api-endpoint:1234/v1/chat/completions",
    "model_name": "semikong-70b",
    "max_tokens": 150,
    "temperature": 0.3,
    "fuzzy_threshold": 60,
    "keyword_threshold": 0.6,
}

Usage

Dataset Analysis

# Convert and analyze dataset
python scripts/datatojson.py

# Search within dataset
python scripts/indexsearch.py semikong_train_entries_fixed.json "search_term" output.json

Model Evaluation

# Run evaluation
python scripts/SKEval.py

Evaluation Metrics

The framework evaluates responses based on six key metrics:

  • Clarity and Directness (C&D)
  • Practicality and Immediate Usability (PIU)
  • Efficiency and Brevity (E&B)
  • Logical Flow and Coherence (LFC)
  • Expert-to-Expert Communication (EEC)
  • Use of Examples and Specificity (UES)

Contributing

We welcome contributions to improve the evaluation framework. Please submit pull requests or open issues for any bugs or enhancements.

Citation

If you use this evaluation framework in your research, please cite:

@article{benistant2024semikong,
  title={SemiKong Evaluation Framework: Testing and Analysis of the First Semiconductor Industry-specific LLM},
  author={Benistant, Francis},
  year={2024},
  email={flb@mltma.com},
  url={https://www.linkedin.com/in/francis-benistant-14882727/}
}

License

This project is licensed under the Apache 2.0 License - see the LICENSE file for details.

Acknowledgments

Contact

For questions or support, please open an issue in the GitHub repository.

About

Python framework for SemiKong evaluation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages