Tusfiqur, Hasan Md, Duy MH Nguyen, Mai TN Truong, Triet A. Nguyen, Binh T. Nguyen, Michael Barz, Hans-Juergen Profitlich, et al. "DRG-Net: interactive joint learning of multi-lesion segmentation and classification for diabetic retinopathy grading. arXiv preprint
- Contains the training scripts for classification and segmentation models for FGADR and EyPACS datasets
- Scripts for Additional models and other datasets will be added soon.
Contact: Hasan Md Tusfiqur Alam ([email protected])
Licenced under CC BY-NC-SA 4.0
Recommended environment:
- python 3.8+
- pytorch 1.7.1+
- torchvision 0.8.2+
- tqdm
- munch
- packaging
- tensorboard
- scikit-learn
- opencv-python
- pillow < 7
- segmentation-models-pytorch
To install the dependencies create a virtualenv and run:
$ pip install -r requirements.txtDatasets used in this paper can be accessed from the following links:
- Indian Diabetic Retinopathy Image Dataset - IDRiD
- FGADR Dataset - Look Deeper into Eyes.
- EyePACS Dataset
- The 'dr_classification' folder contains scripts for the dr grading classification task.
- Follow readme.md inside 'dr_classification' for instructions.
- The 'dr_segmentation' folder contains scripts for the dr segmentation task.
- Follow readme.md inside 'dr_segmentaion' instructions
If you use this code or results in your research, please cite:
@article{tusfiqur2022drg,
title={DRG-Net: interactive joint learning of multi-lesion segmentation and classification for diabetic retinopathy grading},
author={Tusfiqur, Hasan Md and Nguyen, Duy MH and Truong, Mai TN and Nguyen, Triet A and Nguyen, Binh T and Barz, Michael and Profitlich, Hans-Juergen and Than, Ngoc TT and Le, Ngan and Xie, Pengtao and others},
journal={arXiv preprint arXiv:2212.14615},
year={2022}
}