[PIXEL Team]
ColdTbrew
hyjk826
uijinee
junghyun2moon
픽셀 팀이 SW중심대학협의회가 주관한 대회 4등을 수상했습니다 .저희 픽셀 팀은 위성 이미지 segmentation 주제에 대해 ai 모델을 개발과 튜닝을 통해 private 리더보드에서 공동 4등을 했습니다 . 이 모델을 통해 원격탐사 자료를 기반으로 수치지도 갱신, 도시계획, 3D 건물 모델링 등의 다양한 분야에서의 연구가 원활하게 이뤄질 수 있을 것으로 기대합니다. 처음 참석 하는 대회라 실험을 체계적으로 하지 못한 점이 아쉽지만 다음에 대회를 참여하게 된다면 더 좋은 성적을 얻을 수있다고 확신합니다.
-
INTERN_best_mDice_iter_336000.pth
Download Link -
INTERN_k1_best_mDice_iter_210000.pth
Download Link -
INTERN_k3_best_mDice_iter_220000.pth
Download Link -
INTERN_k4_best_mDice_iter_280000.pth
Download Link
cd mmseg_0.x.x
python segmentation/train.py work_dirs/no4/INTERN_config.py
cd mmseg_0.x.x
python segmentation/inference.py
- Swin Pretrained pth
Download Link
- swin_best_mDice_iter_320000.pth (160k + 160k)
Google Drive Link
- Training:
cd mmseg_1.x.x python tools/train.py work_dirs/swin/swin_config.py
cd mmseg_1.x.x
python work_dirs/swin/infer.py
-
m2f_K2_best_mDice_iter_90000.pth (90k)
Google Drive Link -
m2f_K3_best_mDice_iter_90000.pth (90k + 90k)
Google Drive Link -
m2f_K4_best_mDice_iter_90000.pth (90k + 90k)
Google Drive Link
-
K2 Training:
cd mmseg_1.x.x python tools/train.py work_dirs/mask2former/m2f_config_k2.py -
K3 Training:
cd mmseg_1.x.x python tools/train.py work_dirs/mask2former/m2f_config_k3.py -
K4 Training:
cd mmseg_1.x.x python tools/train.py work_dirs/mask2former/m2f_config_k4.py
cd mmseg_1.x.x
python work_dirs/mask2former/infer_m2f.py
- Swin (단일 모델)
- internimage
- best_mDice_iter_336000 + k1 + k3 + k4 (threshold = 2)
- mask2former
- k2 + k3 + k4 (threshold = 2)
last submit
swin + internimage + mask2former (threshold = 2)
Ensemble_by_weight
점수를 최대한 높이기 위해 csv 앙상블의 단점인 threshold를 다양하게 적용해 보기 위해 여러 제출 .csv 파일을
이용해 각각 submit.csv의 public score를 기준으로 각각 가중치를 주어 앙상블 후 ensemble8_21_th0.35.csv 생성해
최고 public score를 0.8226를 도달함
- sys.platform: linux
- Python: 3.8.5 (default, Sep 4 2020, 07:30:14) [GCC 7.3.0]
- CUDA available: True
- numpy_random_seed: 1545188287
- GPU 0: A100-SXM4-40GB
- CUDA_HOME: /usr/local/cuda
- NVCC: Cuda compilation tools, release 11.0, V11.0.221
- GCC: gcc (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0
- PyTorch: 1.12.1
PyTorch compiling details:
-
GCC 9.3
-
C++ Version: 201402
-
Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications
-
Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815)
-
OpenMP 201511 (a.k.a. OpenMP 4.5)
-
LAPACK is enabled (usually provided by MKL)
-
NNPACK is enabled
-
CPU capability usage: AVX2
-
CUDA Runtime 11.3
-
NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37
-
CuDNN 8.3.2 (built against CUDA 11.5)
-
Magma 2.5.2
-
Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.3, CUDNN_VERSION=8.3.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS=-fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.12.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=OFF, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,
-
TorchVision: 0.13.1
-
OpenCV: 4.8.0
-
MMEngine: 0.8.2
- cudnn_benchmark: True
- mp_cfg: {'mp_start_method': 'fork', 'opencv_num_threads': 0}
- dist_cfg: {'backend': 'nccl'}
- seed: 1545188287
- Distributed launcher: none
- Distributed training: False
- GPU number: 1