Idea Explorer is an autonomous research framework that takes structured research ideas and orchestrates AI agents to design, execute, analyze, and document experiments across diverse domains.
Key Features
| Feature | Description |
|---|---|
| Minimal Input | Just provide title, domain, and hypothesis - agents handle the rest |
| Agent-Driven Research | Literature review, dataset search, baseline identification |
| Multi-Provider Support | Works with Claude, Gemini, and Codex (raw CLI by default, notebooks optional) |
| Pragmatic Execution | Creates resources when they don't exist, always proceeds |
| Domain-Agnostic | ML, data science, AI, systems, theory, and more |
| Smart Documentation | Auto-generates reports, code, and results |
| GitHub Integration | Auto-creates repos and pushes results |
Quick Start
# 0. Setup (one-time)
uv sync # Install dependencies with uv
cp .env.example .env
# Edit .env and add your GITHUB_TOKEN and OPENAI_API_KEY
# 1. Fetch an idea from IdeaHub and auto-submit
python src/cli/fetch_from_ideahub.py https://hypogenic.ai/ideahub/idea/HGVv4Z0ALWVHZ9YsstWT --submit
# 2. Run the research
python src/core/runner.py <idea_id># 0. Setup (one-time)
uv sync
cp .env.example .env
# Edit .env and add your GITHUB_TOKEN
# 1. Submit a research idea (creates GitHub repo & workspace)
python src/cli/submit.py ideas/examples/ml_regularization_test.yaml
# 2. (Optional) Add resources to workspace
cd workspace/<repo-name>
# Add datasets, documents, code, etc.
git add . && git commit -m "Add research resources" && git push
# 3. Run the research
cd ../..
python src/core/runner.py <idea_id>
# 4. Results automatically pushed to GitHubSystem Architecture
flowchart LR
subgraph Input
A[Research Idea<br/>YAML] --> B[Submit CLI]
C[IdeaHub URL] --> B
end
subgraph Processing
B --> D[GitHub Repo<br/>Created]
D --> E[Research Agent]
E --> F[Literature Review]
E --> G[Experiment Design]
E --> H[Code Execution]
end
subgraph Output
F --> I[Documentation]
G --> I
H --> I
I --> J[Notebooks]
I --> K[Results & Plots]
I --> L[GitHub Push]
end
Directory Structure:
ideas/
submitted/ <- New research ideas
in_progress/ <- Currently executing
completed/ <- Finished research
workspace/<repo-name>/
src/ <- Python scripts for experiments (default mode)
results/ <- Metrics, plots, models
logs/ <- Execution logs and transcripts
artifacts/ <- Models, checkpoints
notebooks/ <- Jupyter notebooks (only with --use-scribe)
.idea-explorer/ <- Original idea spec
Research-First Philosophy
You can submit minimal ideas - agents will research the details:
- Just provide: title, domain, research question
- Agent searches for: datasets, baselines, evaluation methods
- Grounds in literature when resources exist
- Creates synthetic data/baselines when they don't
- Always proceeds to execution - doesn't get stuck
Example minimal idea:
idea:
title: "Do LLMs understand causality?"
domain: artificial_intelligence
hypothesis: "LLMs can distinguish causal from correlational relationships"
# That's it! Agent handles the restFull specification example:
idea:
title: "Clear, descriptive title"
domain: machine_learning
hypothesis: "Specific, testable hypothesis"
background:
description: "Context and motivation"
papers:
- url: "https://arxiv.org/..."
description: "Why this paper is relevant"
datasets:
- name: "Dataset name"
source: "Where to get it"
methodology:
approach: "High-level strategy"
steps: ["Step 1", "Step 2"]
baselines: ["Baseline 1", "Baseline 2"]
metrics: ["Metric 1", "Metric 2"]
constraints:
compute: gpu_required
time_limit: 3600See ideas/schema.yaml for full specification.
Supported Domains
| Domain | Examples |
|---|---|
| Artificial Intelligence | LLM evaluation, prompt engineering, AI agents, benchmarking |
| Machine Learning | Training, evaluation, hyperparameter tuning |
| Data Science | EDA, statistical analysis, visualization |
| Systems | Performance benchmarking, optimization |
| Theory | Algorithmic analysis, proof verification |
| Scientific Computing | Simulations, numerical methods |
| NLP | Language model experiments, text analysis |
| Computer Vision | Image processing, object detection |
| Reinforcement Learning | Agent training, policy evaluation |
Installation
# 1. Install uv (if not already installed)
curl -LsSf https://astral.sh/uv/install.sh | sh
# 2. Clone repository
git clone https://github.com/ChicagoHAI/idea-explorer
cd idea-explorer
# 3. Install dependencies
uv sync
# 4. (Optional) Install scribe for Jupyter notebook integration
# Only needed if you want to use --use-scribe flag
# Follow instructions at: https://github.com/goodfire-ai/scribe
# 5. Configure environment
cp .env.example .env
# Edit .env and add your GITHUB_TOKEN and AI provider API keysUsage Options
python src/core/runner.py <idea_id>
# Options:
# --provider claude|gemini|codex (default: claude)
# --timeout SECONDS (default: 3600)
# --full-permissions (allow agents to run without prompts)
# --no-github (run locally without GitHub)
# --github-org ORG (specify GitHub org, default: ChicagoHAI)
# --use-scribe (enable Jupyter notebook integration)# Default mode: Raw CLI (recommended)
# Agents write Python scripts, simpler and more unified across providers
python src/core/runner.py my_idea --full-permissions
# Notebook mode: With scribe (optional)
# Agents get Jupyter notebook access via MCP tools
python src/core/runner.py my_idea --full-permissions --use-scribe# With permission prompts (default, safer)
python src/core/runner.py my_idea
# Full autonomous mode (faster, no interruptions)
python src/core/runner.py my_idea --full-permissionsfrom src.evaluation.critic_runner import CriticRunner
runner = CriticRunner()
runner.evaluate_research(
run_dir="runs/my_idea/",
critics=["code_quality", "scientific_rigor", "reproducibility"]
)- docs/WORKFLOW.md - Complete workflow guide
- docs/IDEAHUB_INTEGRATION.md - IdeaHub integration
- DESIGN.md - Comprehensive design document
- GITHUB_INTEGRATION.md - GitHub setup and usage
- ideas/schema.yaml - Full specification schema
- ideas/examples/ - Example research ideas
Contributions welcome! Areas of interest:
- New domain templates (biology, chemistry, social science, etc.)
- Additional evaluation criteria
- Integration with experiment trackers
- Web interface
- Multi-agent collaboration features
If you use Idea Explorer in research, please cite:
@software{idea_explorer_2025,
title={Idea Explorer: Autonomous Research Framework},
author={Haokun Liu, Chenhao Tan},
year={2025},
url={https://github.com/ChicagoHAI/idea-explorer}
}Apache 2.0 - See LICENSE file
Ready to automate your research?
python src/cli/submit.py ideas/examples/ml_regularization_test.yamlFor questions and feedback, open an issue or join our Discord.

