Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -88,6 +88,8 @@ This is the first work to correct hallucination in multimodal large language mod
---

<font size=5><center><b> Table of Contents </b> </center></font>
- [Awesome-Multimodal-Large-Language-Models](#awesome-multimodal-large-language-models)
- [Our MLLM works](#our-mllm-works)
- [Awesome Papers](#awesome-papers)
- [Multimodal Instruction Tuning](#multimodal-instruction-tuning)
- [Multimodal Hallucination](#multimodal-hallucination)
Expand Down Expand Up @@ -482,6 +484,8 @@ This is the first work to correct hallucination in multimodal large language mod
## Evaluation
| Title | Venue | Date | Page |
|:--------|:--------:|:--------:|:--------:|
| ![Stars](https://img.shields.io/github/stars/lerogo/MMGenBench?style=social&label=Star) <br> [**NaturalBench: Evaluating Vision-Language Models on Natural Adversarial Samples**](https://arxiv.org/pdf/2410.14669) <br> | NeurIPS | 2024-10-22 | [Github](https://github.com/Baiqi-Li/NaturalBench) |
| ![Stars](https://img.shields.io/github/stars/lerogo/MMGenBench?style=social&label=Star) <br> [**Evaluating Text-to-Visual Generation with Image-to-Text Generation**](https://arxiv.org/pdf/2404.01291?) <br> | ECCV | 2024-6-18 | [Github](https://github.com/linzhiqiu/t2v_metrics) |
| ![Stars](https://img.shields.io/github/stars/lerogo/MMGenBench?style=social&label=Star) <br> [**Thinking in Space: How Multimodal Large Language Models See, Remember, and Recall Spaces**](https://arxiv.org/pdf/2412.14171) <br> | arXiv | 2024-12-18 | [Github](https://github.com/vision-x-nyu/thinking-in-space) |
| ![Stars](https://img.shields.io/github/stars/lerogo/MMGenBench?style=social&label=Star) <br> [**MMGenBench: Evaluating the Limits of LMMs from the Text-to-Image Generation Perspective**](https://arxiv.org/pdf/2411.14062) <br> | arXiv | 2024-11-21 | [Github](https://github.com/lerogo/MMGenBench) |
| ![Stars](https://img.shields.io/github/stars/multimodal-art-projection/OmniBench?style=social&label=Star) <br> [**OmniBench: Towards The Future of Universal Omni-Language Models**](https://arxiv.org/pdf/2409.15272) <br> | arXiv | 2024-09-23 | [Github](https://github.com/multimodal-art-projection/OmniBench) |
Expand Down Expand Up @@ -647,6 +651,8 @@ This is the first work to correct hallucination in multimodal large language mod
## Benchmarks for Evaluation
| Name | Paper | Link | Notes |
|:-----|:-----:|:----:|:-----:|
| **GenAI-Bench** | [GenAI-Bench: Evaluating and Improving Compositional Text-to-Visual Generation](https://arxiv.org/pdf/2406.13743) | [Link](https://huggingface.co/datasets/BaiqiL/GenAI-Bench) | A benchmark for evaluating and improving Compositional Text-to-Visual Generation |
| **NaturalBench** | [NaturalBench: Evaluating Vision-Language Models on Natural Adversarial Samples](https://arxiv.org/pdf/2410.14669) | [Link](https://github.com/Baiqi-Li/NaturalBench) | A vision-centric VQA benchmark (NeurIPS'24) that challenges vision-language models with simple questions about natural imagery |
| **Inst-IT Bench** | [Inst-IT: Boosting Multimodal Instance Understanding via Explicit Visual Prompt Instruction Tuning](https://arxiv.org/pdf/2412.03565) | [Link](https://github.com/inst-it/inst-it) | A benchmark to evaluate fine-grained instance-level understanding in images and videos |
| **M<sup>3</sup>CoT** | [M<sup>3</sup>CoT: A Novel Benchmark for Multi-Domain Multi-step Multi-modal Chain-of-Thought](https://arxiv.org/pdf/2405.16473) | [Link](https://github.com/LightChen233/M3CoT) | A multi-domain, multi-step benchmark for multimodal CoT |
| **MMGenBench** | [MMGenBench: Evaluating the Limits of LMMs from the Text-to-Image Generation Perspective](https://arxiv.org/pdf/2411.14062) | [Link](https://github.com/lerogo/MMGenBench) | A benchmark that gauges the performance of constructing image-generation prompt given an image |
Expand Down