Skip to content

Commit a54a030

Browse files
committed
Update inner-product-and-norm.md
1 parent b6242e8 commit a54a030

9 files changed

+9
-9
lines changed

_posts/de/2025-09-10-inner-product-and-norm.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -45,7 +45,7 @@ Ist hier $F=\mathbb{R}$, so ist die konjugiert komplexe Zahl einer reellen Zahl
4545
>
4646
{: .prompt-info }
4747

48-
> Das hier gemeinte „**Skalarprodukt (scalar product)**“ ist eine Operation zwischen zwei Vektoren und unterscheidet sich von der Skalarmultiplikation, also der Multiplikation eines Vektors mit einem Skalar, wie in [Vektoren und Linearkombinationen](/posts/vectors-and-linear-combinations/) behandelt. Da die englischen Bezeichnungen ähnlich sind, ist Verwechslungsgefahr gegeben.
48+
> Das hier gemeinte „**Skalarprodukt (scalar product)**“ ist eine Operation zwischen zwei Vektoren und unterscheidet sich von der Skalarmultiplikation, also der Operation zwischen Skalar und Vektor, wie in [Vektoren und Linearkombinationen](/posts/vectors-and-linear-combinations/) behandelt. Da die englischen Bezeichnungen ähnlich sind und die [koreanische Standardübersetzung nach der Korean Mathematical Society](https://www.kms.or.kr/mathdict/list.html?key=kname&keyword=%EC%8A%A4%EC%B9%BC%EB%9D%BC%EA%B3%B1) sogar identisch ist, ist Verwechslungsgefahr gegeben.
4949
>
5050
> Zur Vermeidung von Missverständnissen werde ich nach Möglichkeit den Begriff **Punktprodukt (dot product)** verwenden.
5151
{: .prompt-warning }

_posts/en/2025-09-10-inner-product-and-norm.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -45,7 +45,7 @@ When $F=\mathbb{R}$, complex conjugation is trivial, so the standard inner produ
4545
>
4646
{: .prompt-info }
4747

48-
> The “scalar product” mentioned here is an operation between two vectors and is distinct from the scalar multiplication of a vector by a constant discussed in [Vectors and Linear Combinations](/posts/vectors-and-linear-combinations/). The English terms are similar, and <u>the Korean translations are identical</u>, so be careful not to confuse them.
48+
> The “scalar product” mentioned here is an operation between two vectors and is distinct from the operation between a scalar and a vector, “scalar multiplication,” discussed in [Vectors and Linear Combinations](/posts/vectors-and-linear-combinations/). The English terms are similar, and [per the Korean Mathematical Society’s standard terminology the Korean translations are identical](https://www.kms.or.kr/mathdict/list.html?key=kname&keyword=%EC%8A%A4%EC%B9%BC%EB%9D%BC%EA%B3%B1), so be careful not to confuse them.
4949
>
5050
> To avoid confusion, I will refer to it as the **dot product** whenever possible.
5151
{: .prompt-warning }

_posts/es/2025-09-10-inner-product-and-norm.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -45,7 +45,7 @@ Si aquí $F=\mathbb{R}$, como el conjugado complejo de un número real es él mi
4545
>
4646
{: .prompt-info }
4747

48-
> El 'producto escalar (**scalar product**)' aquí mencionado es una operación entre vectores, distinta de la 'multiplicación escalar (**scalar multiplication**)' (multiplicación por un escalar) tratada en [Vectores y combinaciones lineales](/posts/vectors-and-linear-combinations/). Dado que en inglés las expresiones son similares y en español <u>la traducción puede ser ambigua</u>, conviene evitar confusiones.
48+
> El 'producto escalar (**scalar product**)' aquí mencionado es una operación entre vectores, distinta de la operación entre un escalar y un vector, la 'multiplicación escalar (**scalar multiplication**)', tratada en [Vectores y combinaciones lineales](/posts/vectors-and-linear-combinations/). Dado que en inglés las expresiones son parecidas y, según el estándar de la Sociedad Matemática de Corea, [las denominaciones en coreano son idénticas](https://www.kms.or.kr/mathdict/list.html?key=kname&keyword=%EC%8A%A4%EC%B9%BC%EB%9D%BC%EA%B3%B1), conviene evitar confusiones.
4949
>
5050
> Para minimizar la ambigüedad, en lo sucesivo nos referiremos preferentemente a esta operación como **producto punto (dot product)**.
5151
{: .prompt-warning }

_posts/fr/2025-09-10-inner-product-and-norm.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -45,7 +45,7 @@ Si $F=\mathbb{R}$, le conjugué d’un réel étant lui-même, le produit scalai
4545
>
4646
{: .prompt-info }
4747

48-
> Ici, le « produit scalaire » est une opération entre vecteurs, distincte de la « multiplication scalaire » (produit d’un vecteur par un scalaire) abordée dans [Vecteurs et combinaisons linéaires](/posts/vectors-and-linear-combinations/). Les expressions anglaises se ressemblent, et <u>en coréen le nom est même identique</u>; attention à ne pas les confondre.
48+
> Ici, le « produit scalaire » est une opération entre vecteurs, distincte de l’« opération entre un scalaire et un vecteur » traitée dans [Vecteurs et combinaisons linéaires](/posts/vectors-and-linear-combinations/), à savoir la « multiplication scalaire (scalar multiplication) ». Les expressions anglaises se ressemblent et, [selon la terminologie coréenne normalisée par la Société mathématique de Corée, elles portent exactement le même nom](https://www.kms.or.kr/mathdict/list.html?key=kname&keyword=%EC%8A%A4%EC%B9%BC%EB%9D%BC%EA%B3%B1); attention à ne pas les confondre.
4949
>
5050
> Pour éviter toute confusion, nous emploierons autant que possible le terme **dot product**.
5151
{: .prompt-warning }

_posts/ja/2025-09-10-inner-product-and-norm.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -45,7 +45,7 @@ image: /assets/img/math-and-physics-cropped.webp
4545
>
4646
{: .prompt-info }
4747

48-
> ここでいう「スカラー積(scalar product)」はベクトルどうしの演算であり、[ベクトルと線形結合](/posts/vectors-and-linear-combinations/)で扱ったベクトルのスカラー倍、「スカラー倍(scalar multiplication)」とは別の演算である。英語表現も似ているうえに、<u>韓国語では訳語がまったく同じなので</u>混同しないよう注意しよう。
48+
> ここでいう「スカラー積(scalar product)」はベクトルどうしの演算であり、[ベクトルと線形結合](/posts/vectors-and-linear-combinations/)で扱ったスカラーとベクトルの間の演算である「スカラー倍(scalar multiplication)」とは別の演算である。英語表現も似ているうえに、[大韓数学会の韓国語訳語基準では表記がまったく同一であるため](https://www.kms.or.kr/mathdict/list.html?key=kname&keyword=%EC%8A%A4%EC%B9%BC%EB%9D%BC%EA%B3%B1)混同しないよう注意しよう。
4949
>
5050
> 混同を避けるため、以後は可能なかぎり**ドット積(dot product)**と呼ぶことにする。
5151
{: .prompt-warning }

_posts/ko/2025-09-10-inner-product-and-norm.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -45,7 +45,7 @@ image: /assets/img/math-and-physics-cropped.webp
4545
>
4646
{: .prompt-info }
4747

48-
> 여기서 말하는 '스칼라곱(**scalar product**)'은 벡터와 벡터 간의 연산으로, [벡터와 선형결합](/posts/vectors-and-linear-combinations/)에서 다뤘던 벡터의 상수배, '스칼라곱(**scalar multiplication**)'과는 별개의 연산이다. 영문 표현도 비슷한 편인 데다, <u>한글 번역명은 아예 동일하기 때문에</u> 혼동하지 않도록 주의하자.
48+
> 여기서 말하는 '스칼라곱(**scalar product**)'은 벡터와 벡터 간의 연산으로, [벡터와 선형결합](/posts/vectors-and-linear-combinations/)에서 다뤘던 스칼라와 벡터 간 연산인 '스칼라배(**scalar multiplication**)'과는 별개의 연산이다. 영문 표현도 비슷한 편인 데다, [대한수학회 기준 한국어 번역 표현은 아예 동일하기 때문에](https://www.kms.or.kr/mathdict/list.html?key=kname&keyword=%EC%8A%A4%EC%B9%BC%EB%9D%BC%EA%B3%B1) 혼동하지 않도록 주의하자.
4949
>
5050
> 혼동을 방지하기 위해, 앞으로는 가급적 **점곱(dot product)**으로 지칭하겠다.
5151
{: .prompt-warning }

_posts/pt-BR/2025-09-10-inner-product-and-norm.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -45,7 +45,7 @@ Se $F=\mathbb{R}$, como o conjugado de um número real é ele próprio, o produt
4545
>
4646
{: .prompt-info }
4747

48-
> Aqui, “produto escalar (**scalar product**)” é uma operação entre vetores, distinta da “multiplicação por escalar (**scalar multiplication**)” — a multiplicação de um vetor por um número — tratada em [Vetores e combinações lineares](/posts/vectors-and-linear-combinations/). Em inglês os termos são parecidos e, <u>em coreano a tradução é até idêntica</u>; portanto, cuidado para não confundir.
48+
> Aqui, “produto escalar (**scalar product**)” é uma operação entre vetores, distinta da “multiplicação por escalar (**scalar multiplication**)” — a multiplicação de um vetor por um número — tratada em [Vetores e combinações lineares](/posts/vectors-and-linear-combinations/). Em inglês os termos são parecidos e, [de acordo com o padrão de tradução da Sociedade Matemática da Coreia, em coreano são de fato idênticos](https://www.kms.or.kr/mathdict/list.html?key=kname&keyword=%EC%8A%A4%EC%B9%BC%EB%9D%BC%EA%B3%B1); portanto, cuidado para não confundir.
4949
>
5050
> Para evitar confusões, doravante usaremos preferencialmente o termo produto escalar (**dot product**).
5151
{: .prompt-warning }

_posts/zh-TW/2025-09-10-inner-product-and-norm.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -45,7 +45,7 @@ image: /assets/img/math-and-physics-cropped.webp
4545
>
4646
{: .prompt-info }
4747

48-
> 此處所稱的「純量積(scalar product)」是向量與向量之間的運算;而在[向量與線性組合](/posts/vectors-and-linear-combinations/)中討論的向量之純量倍,是「純量乘法(scalar multiplication)」這個不同的運算。由於英文表述也相近,且<u>韓文譯名甚至完全相同</u>,因此請留意不要混淆。
48+
> 此處所稱的「純量積(scalar product)」是向量與向量之間的運算;而在[向量與線性組合](/posts/vectors-and-linear-combinations/)中討論的、標量與向量之間的運算「純量乘法(scalar multiplication)」則是另一種不同的運算。由於英文表述也相近,且[依據大韓數學會的韓語術語標準,兩者的韓文譯名甚至完全相同](https://www.kms.or.kr/mathdict/list.html?key=kname&keyword=%EC%8A%A4%EC%B9%BC%EB%9D%BC%EA%B3%B1),因此請留意不要混淆。
4949
>
5050
> 為避免混淆,下文將儘量以**點積(dot product)**稱呼之。
5151
{: .prompt-warning }

tools/hash.csv

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -55,5 +55,5 @@
5555
2025-05-17-gravitational-field-and-potential.md,3df714ae714194db7b30ed0793d1ac13efa889fd0ad9ee51e963eb1acae8bcd2
5656
2025-08-05-about-web-vitals.md,fc41a5d8797a96e937e34feaa5ffcaeccda6b13062ac93515453f0b126b5fd64
5757
2025-09-07-vectors-and-linear-combinations.md,8495996b8452de0ea0c29d9fd59f99dc68c82d8940ec9e1a25053417350b99dc
58-
2025-09-10-inner-product-and-norm.md,dc83717dd55b343d7a7debf067834265c55dff96350d6abeea631e2eedd4ca3a
58+
2025-09-10-inner-product-and-norm.md,e6a3abb24ab6f738e7817dd57251f2d821ab8ad78c8b77146597677cc43ea786
5959
2025-09-13-vector-spaces-subspaces-and-matrices.md,5e835ebdb89973cf5d7c82cb06f29a324f24bd3eaae2e419b47b429649d2550f

0 commit comments

Comments
 (0)