Skip to content

Commit 683561d

Browse files
committed
Fix internal link errors
1 parent f1169a3 commit 683561d

8 files changed

+8
-8
lines changed

_posts/de/2024-10-16-time-independent-schrodinger-equation.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -25,7 +25,7 @@ math: true
2525
- Kontinuierliche Wahrscheinlichkeitsverteilung und Wahrscheinlichkeitsdichte
2626
- [Schrödinger-Gleichung und Wellenfunktion](/posts/schrodinger-equation-and-the-wave-function/)
2727
- [Ehrenfest-Theorem](/posts/ehrenfest-theorem/)
28-
- [Methode der Variablentrennung](/posts/separation-of-variables/)
28+
- [Methode der Variablentrennung](/posts/Separation-of-Variables/)
2929

3030
## Herleitung mit der Methode der Variablentrennung
3131
Im Beitrag über das [Ehrenfest-Theorem](/posts/ehrenfest-theorem/) haben wir untersucht, wie verschiedene physikalische Größen mit Hilfe der Wellenfunktion $\Psi$ berechnet werden können. Die wichtige Frage ist nun, wie man diese Wellenfunktion $\Psi(x,t)$ erhält. Normalerweise muss man die [Schrödinger-Gleichung](/posts/schrodinger-equation-and-the-wave-function/), eine partielle Differentialgleichung in Bezug auf Position $x$ und Zeit $t$, für ein gegebenes Potential $V(x,t)$ lösen.

_posts/en/2024-10-16-time-independent-schrodinger-equation.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -27,7 +27,7 @@ math: true
2727
- Continuous probability distribution and probability density
2828
- [Schrödinger Equation and Wave Function](/posts/schrodinger-equation-and-the-wave-function/)
2929
- [Ehrenfest Theorem](/posts/ehrenfest-theorem/)
30-
- [Separation of Variables](/posts/separation-of-variables/)
30+
- [Separation of Variables](/posts/Separation-of-Variables/)
3131

3232
## Derivation Using Separation of Variables
3333
In the [post about Ehrenfest's theorem](/posts/ehrenfest-theorem/), we looked at how to calculate various physical quantities using the wave function $\Psi$. The important question then is how to obtain this wave function $\Psi(x,t)$. Usually, for a given potential $V(x,t)$, we need to solve the [Schrödinger equation](/posts/schrodinger-equation-and-the-wave-function/), which is a partial differential equation in position $x$ and time $t$.

_posts/es/2024-10-16-time-independent-schrodinger-equation.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -27,7 +27,7 @@ math: true
2727
- Distribuciones de probabilidad continua y densidad de probabilidad
2828
- [Ecuación de Schrödinger y función de onda](/posts/schrodinger-equation-and-the-wave-function/)
2929
- [Teorema de Ehrenfest](/posts/ehrenfest-theorem/)
30-
- [Método de separación de variables](/posts/separation-of-variables/)
30+
- [Método de separación de variables](/posts/Separation-of-Variables/)
3131

3232
## Derivación utilizando el método de separación de variables
3333
En la publicación sobre [el teorema de Ehrenfest](/posts/ehrenfest-theorem/), vimos cómo calcular varias cantidades físicas utilizando la función de onda $\Psi$. Entonces, lo importante es cómo obtener esa función de onda $\Psi(x,t)$, y generalmente se debe resolver la [ecuación de Schrödinger](/posts/schrodinger-equation-and-the-wave-function/), que es una ecuación diferencial parcial en términos de la posición $x$ y el tiempo $t$ para un potencial dado $V(x,t)$.

_posts/fr/2024-10-16-time-independent-schrodinger-equation.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,7 @@ math: true
2626
- Distributions de probabilité continues et densité de probabilité
2727
- [Équation de Schrödinger et fonction d'onde](/posts/schrodinger-equation-and-the-wave-function/)
2828
- [Théorème d'Ehrenfest](/posts/ehrenfest-theorem/)
29-
- [Méthode de séparation des variables](/posts/separation-of-variables/)
29+
- [Méthode de séparation des variables](/posts/Separation-of-Variables/)
3030

3131
## Dérivation utilisant la méthode de séparation des variables
3232
Dans le [post sur le théorème d'Ehrenfest](/posts/ehrenfest-theorem/), nous avons examiné comment calculer diverses quantités physiques à l'aide de la fonction d'onde $\Psi$. La question importante est alors de savoir comment obtenir cette fonction d'onde $\Psi(x,t)$. Généralement, il faut résoudre [l'équation de Schrödinger](/posts/schrodinger-equation-and-the-wave-function/), qui est une équation aux dérivées partielles en position $x$ et en temps $t$ pour un potentiel donné $V(x,t)$.

_posts/ja/2024-10-16-time-independent-schrodinger-equation.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,7 @@ math: true
2626
- 連続確率分布と確率密度
2727
- [シュレーディンガー方程式と波動関数](/posts/schrodinger-equation-and-the-wave-function/)
2828
- [エーレンフェストの定理](/posts/ehrenfest-theorem/)
29-
- [変数分離法](/posts/separation-of-variables/)
29+
- [変数分離法](/posts/Separation-of-Variables/)
3030

3131
## 変数分離法を用いた導出
3232
[エーレンフェストの定理に関する投稿](/posts/ehrenfest-theorem/)で波動関数$\Psi$を用いて知りたい様々な物理量をどのように計算するかを見てきました。そうすると重要なのはその波動関数$\Psi(x,t)$をどのように得るかということですが、通常は与えられたポテンシャル$V(x,t)$に対して位置$x$と時間$t$に関する偏微分方程式である[シュレーディンガー方程式](/posts/schrodinger-equation-and-the-wave-function/)を解く必要があります。

_posts/ko/2024-10-16-time-independent-schrodinger-equation.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,7 @@ math: true
2626
- 연속확률분포와 확률밀도
2727
- [슈뢰딩거 방정식과 파동함수](/posts/schrodinger-equation-and-the-wave-function/)
2828
- [에렌페스트 정리](/posts/ehrenfest-theorem/)
29-
- [변수분리법](/posts/separation-of-variables/)
29+
- [변수분리법](/posts/Separation-of-Variables/)
3030

3131
## 변수분리법을 이용한 유도
3232
[에렌페스트 정리에 관한 포스트](/posts/ehrenfest-theorem/)에서 파동함수 $\Psi$를 이용하여 알고자 하는 여러 물리량을 어떻게 계산하는지 살펴보았다. 그렇다면 중요한 것은 그 파동함수 $\Psi(x,t)$를 어떻게 얻냐는 것인데, 보통은 주어진 퍼텐셜 $V(x,t)$에 대하여 위치 $x$와 시간 $t$에 대한 편미분방정식인 [슈뢰딩거 방정식](/posts/schrodinger-equation-and-the-wave-function/)을 풀어야 한다.

_posts/pt-BR/2024-10-16-time-independent-schrodinger-equation.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,7 @@ math: true
2626
- Distribuição de probabilidade contínua e densidade de probabilidade
2727
- [Equação de Schrödinger e função de onda](/posts/schrodinger-equation-and-the-wave-function/)
2828
- [Teorema de Ehrenfest](/posts/ehrenfest-theorem/)
29-
- [Método de separação de variáveis](/posts/separation-of-variables/)
29+
- [Método de separação de variáveis](/posts/Separation-of-Variables/)
3030

3131
## Derivação usando o método de separação de variáveis
3232
No [post sobre o teorema de Ehrenfest](/posts/ehrenfest-theorem/), vimos como calcular várias quantidades físicas usando a função de onda $\Psi$. Então, o importante é como obter essa função de onda $\Psi(x,t)$, e geralmente é necessário resolver a [equação de Schrödinger](/posts/schrodinger-equation-and-the-wave-function/), que é uma equação diferencial parcial em relação à posição $x$ e ao tempo $t$ para um dado potencial $V(x,t)$.

tools/hash.csv

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -31,4 +31,4 @@
3131
2024-09-10-principle-of-relativity-and-lorentz-transformation.md,14ea266afcc30a3c2a03081db5f8d15e11c7eeaa318221cb61bfbf5250e6db71
3232
2024-10-08-schrodinger-equation-and-the-wave-function.md,2ddcb210d6072c29c4d04f7a3486d8cf4134338020e875b28d7ef4bbe746da73
3333
2024-10-12-ehrenfest-theorem.md,6f26377eb6e29c447f87c95c40bfbd89eb222bddc8f7782afbb8471543f018c5
34-
2024-10-16-time-independent-schrodinger-equation.md,49c27ec671c5f6cc482fda5c5a0847faeffcc1844d4792c09368082efd457377
34+
2024-10-16-time-independent-schrodinger-equation.md,8a7a95a09b396f2c559ad8c38fff1918bedadcaa5e7b308cc1d116361c5b5cef

0 commit comments

Comments
 (0)