Skip to content

Commit 39ef3ae

Browse files
committed
all
0 parents  commit 39ef3ae

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

48 files changed

+74445
-0
lines changed

PLOT.py

Lines changed: 90 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,90 @@
1+
import matplotlib.pyplot as plt
2+
import pickle, glob
3+
import numpy as np
4+
import sys
5+
psnr_prefix = './psnr/*'
6+
psnr_paths = sorted(glob.glob(psnr_prefix))
7+
8+
psnr_means = {}
9+
10+
def filter_by_scale(row, scale):
11+
return row[-1]==scale
12+
13+
for i, psnr_path in enumerate(psnr_paths):
14+
print ""
15+
print psnr_path
16+
psnr_dict = None
17+
epoch = str(i)#psnr_path.split("_")[-1]
18+
with open(psnr_path, 'rb') as f:
19+
psnr_dict = pickle.load(f)
20+
dataset_keys = psnr_dict.keys()
21+
for j, key in enumerate(dataset_keys):
22+
print 'dataset', key
23+
psnr_list = psnr_dict[key]
24+
psnr_np = np.array(psnr_list)
25+
26+
psnr_np_2 = psnr_np[np.array([filter_by_scale(row,2) for row in psnr_np])]
27+
psnr_np_3 = psnr_np[np.array([filter_by_scale(row,3) for row in psnr_np])]
28+
psnr_np_4 = psnr_np[np.array([filter_by_scale(row,4) for row in psnr_np])]
29+
print "x2:",np.mean(psnr_np_2, axis=0).tolist()
30+
print "x3:",np.mean(psnr_np_3, axis=0).tolist()
31+
print "x4:",np.mean(psnr_np_4, axis=0).tolist()
32+
33+
mean_2 = np.mean(psnr_np_2, axis=0).tolist()
34+
mean_3 = np.mean(psnr_np_3, axis=0).tolist()
35+
mean_4 = np.mean(psnr_np_4, axis=0).tolist()
36+
psnr_mean = [mean_2, mean_3, mean_4]
37+
#print 'psnr mean', psnr_mean
38+
if psnr_means.has_key(key):
39+
psnr_means[key][epoch] = psnr_mean
40+
else:
41+
psnr_means[key] = {epoch: psnr_mean}
42+
43+
#sys.exit(1)
44+
45+
keys = psnr_means.keys()
46+
for i, key in enumerate(keys):
47+
psnr_dict = psnr_means[key]
48+
epochs = sorted(psnr_dict.keys())
49+
x_axis = []
50+
bicub_mean = []
51+
vdsr_mean_2 = []
52+
vdsr_mean_3 = []
53+
vdsr_mean_4 = []
54+
55+
for epoch in epochs:
56+
print epoch
57+
print psnr_dict[epoch]
58+
x_axis.append(int(epoch))
59+
bicub_mean.append(psnr_dict[epoch][0][0])
60+
vdsr_mean_2.append(psnr_dict[epoch][0][1])
61+
vdsr_mean_3.append(psnr_dict[epoch][1][1])
62+
vdsr_mean_4.append(psnr_dict[epoch][2][1])
63+
plt.figure(i)
64+
print key
65+
print len(x_axis), len(bicub_mean), len(vdsr_mean_2)
66+
print vdsr_mean_2
67+
print "x2", np.argmax(vdsr_mean_2), np.max(vdsr_mean_2)
68+
print "x3", np.argmax(vdsr_mean_3), np.max(vdsr_mean_3)
69+
print "x4", np.argmax(vdsr_mean_4), np.max(vdsr_mean_4)
70+
lines_bicub = plt.plot(vdsr_mean_2, 'g')
71+
lines_bicub = plt.plot(vdsr_mean_4, 'b', vdsr_mean_3, 'y')
72+
plt.setp(lines_bicub, linewidth=3.0)
73+
plt.show()
74+
75+
"""
76+
psnr_means :
77+
{
78+
'DATASET_NAME' :
79+
{
80+
'EPOCH' : [bicubic psnr, vdsr psnr]
81+
}
82+
'DATASET_NAME_2':
83+
{
84+
'EPOCH' : [bicubic psnr, vdsr psnr]
85+
}
86+
...
87+
}
88+
"""
89+
# for i, psnr_path in enumerate(psnr_paths):
90+
# print i, psnr_path

README.md

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,2 @@
1+
# STAN
2+
This is an official implementation of Video Super-Resolution via a Spatio-Temporal Alignment Network

datasets.py

Lines changed: 112 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,112 @@
1+
import os, sys, math, random, glob, cv2
2+
import numpy as np
3+
### torch lib
4+
import torch
5+
import torch.utils.data as data
6+
### custom lib
7+
import utils
8+
import pdb
9+
import torchvision.transforms as transforms
10+
11+
12+
class RandomCrop(object):
13+
def __init__(self, image_size, crop_size):
14+
self.ch, self.cw = crop_size
15+
ih, iw = image_size
16+
self.h1 = random.randint(0, ih - self.ch)
17+
self.w1 = random.randint(0, iw - self.cw)
18+
self.h2 = self.h1 + self.ch
19+
self.w2 = self.w1 + self.cw
20+
def __call__(self, img):
21+
if len(img.shape) == 3:
22+
return img[self.h1 : self.h2, self.w1 : self.w2, :]
23+
else:
24+
return img[self.h1 : self.h2, self.w1 : self.w2]
25+
26+
class MultiFramesDataset(data.Dataset):
27+
def __init__(self, opts, mode):
28+
super(MultiFramesDataset, self).__init__()
29+
self.transform = transforms.Compose([transforms.ToTensor()])
30+
self.opts = opts
31+
self.mode = mode
32+
self.task_videos = []
33+
self.num_frames = []
34+
self.dataset_task_list = []
35+
36+
list_filename = os.path.join(opts.list_dir, "train_tasks_%s.txt" %(opts.datasets_tasks))
37+
with open(list_filename) as f:
38+
for line in f.readlines():
39+
if line[0] != "#":
40+
self.dataset_task_list.append(line.strip().split())
41+
self.num_tasks = len(self.dataset_task_list)
42+
for dataset, task in self.dataset_task_list:
43+
list_filename = os.path.join(opts.list_dir, "%s_%s.txt" %(dataset, mode))
44+
print("[%s] Read %s (Task %s)" %(self.__class__.__name__, list_filename, task))
45+
with open(list_filename) as f:
46+
videos = [line.rstrip() for line in f.readlines()]
47+
for video in videos:
48+
self.task_videos.append([task, os.path.join(dataset, video)])
49+
input_dir = os.path.join(self.opts.data_dir, self.mode, "input", dataset, video)
50+
frame_list = glob.glob(os.path.join(input_dir, '*.png'))
51+
if len(frame_list) == 0:
52+
raise Exception("No frames in %s" %input_dir)
53+
self.num_frames.append(len(frame_list))
54+
print("[%s] Total %d videos (%d frames), %d tasks" %(self.__class__.__name__, len(self.task_videos), sum(self.num_frames), self.num_tasks))
55+
56+
def __len__(self):
57+
return len(self.task_videos)
58+
def __getitem__(self, index):
59+
## random select starting frame index t between [0, N - #sample_frames]
60+
N = self.num_frames[index]
61+
T = random.randint(0, N - self.opts.sample_frames)
62+
task = self.task_videos[index][0]
63+
video = self.task_videos[index][1]
64+
## load input and processed frames
65+
input_dir = os.path.join(self.opts.data_dir, self.mode, "input")
66+
process_dir = os.path.join(self.opts.data_dir, self.mode, "processed", task)
67+
## sample from T to T + #sample_frames - 1
68+
frame_i = []
69+
frame_p = []
70+
frame_i_tmp = []
71+
frame_p_tmp = []
72+
for t in range(T, T + self.opts.sample_frames):
73+
frame_i_tmp.append( utils.read_img(os.path.join(input_dir, video, "%08d.png" %t) ) )
74+
frame_p_tmp.append( utils.read_img(os.path.join(process_dir, video, "%08d.png" %t) ) )
75+
## data augmentation
76+
if self.mode == 'train':
77+
for t in range(self.opts.sample_frames):
78+
frame_i_tmp[t], frame_p_tmp[t] = utils.get_patch(frame_i_tmp[t], frame_p_tmp[t], self.opts.crop_size, 4, multi_scale=False)
79+
frame_i.append(frame_i_tmp[t])
80+
frame_p.append(frame_p_tmp[t])
81+
if self.opts.geometry_aug:
82+
### random rotate
83+
rotate = random.randint(0, 3)
84+
if rotate != 0:
85+
for t in range(self.opts.sample_frames):
86+
frame_i[t] = np.rot90(frame_i[t], rotate)
87+
frame_p[t] = np.rot90(frame_p[t], rotate)
88+
## horizontal flip
89+
if np.random.random() >= 0.5:
90+
for t in range(self.opts.sample_frames):
91+
frame_i[t] = cv2.flip(frame_i[t], flipCode=0)
92+
frame_p[t] = cv2.flip(frame_p[t], flipCode=0)
93+
elif self.mode == "test":
94+
## resize image to avoid size mismatch after downsampline and upsampling
95+
H_i = frame_i[0].shape[0]
96+
W_i = frame_i[0].shape[1]
97+
98+
H_o = int(math.ceil(float(H_i) / self.opts.size_multiplier) * self.opts.size_multiplier)
99+
W_o = int(math.ceil(float(W_i) / self.opts.size_multiplier) * self.opts.size_multiplier)
100+
for t in range(self.opts.sample_frames):
101+
frame_i_tmp[t], frame_p_tmp[t] = utils.get_patch(frame_i_tmp[t], frame_p_tmp[t], self.opts.crop_size, 4, multi_scale=False)
102+
frame_i.append(frame_i_tmp[t])
103+
frame_p.append(frame_p_tmp[t])
104+
105+
else:
106+
raise Exception("Unknown mode (%s)" %self.mode)
107+
### convert (H, W, C) array to (C, H, W) tensor
108+
data = []
109+
for t in range(self.opts.sample_frames):
110+
data.append(torch.from_numpy(frame_i[t].transpose(2, 0, 1).astype(np.float32)).contiguous())
111+
data.append(torch.from_numpy(frame_p[t].transpose(2, 0, 1).astype(np.float32)).contiguous())
112+
return data

install.sh

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,4 @@
1+
#!/bin/bash
2+
cd ./networks/FAC/kernelconv2d
3+
python setup.py clean
4+
python setup.py install --user

lists/REDS4_test.txt

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,4 @@
1+
000
2+
011
3+
015
4+
020

lists/Vid4_test.txt

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,4 @@
1+
calendar
2+
city
3+
foliage
4+
walk

0 commit comments

Comments
 (0)