Skip to content

trying to run prediction on BézierLaneNet trained on CULane with ResNet18 #182

@a2mar

Description

@a2mar

Hello,
As the title states, I'm trying to get the prediction for an image on a pretrained BézierLaneNet.
I installed all dependecies, cloned the repository and downloaded the correct .pt file for the weights (resnet18_bezierlanenet_culane_aug1b_20211109.pt).

I ran the command accordning to the shell script:

$ python main_landet.py --test --config=configs/lane_detection/bezierlanenet/resnet18_culane_aug1b.py --mixed-precision --checkpoint=resnet18_bezierlanenet_culane_aug1b_20211109.pt

However, I get the following Error:

Build from dict error in function or class: CULaneAsBezier
In Python: <class 'utils.datasets.lane_as_bezier.CULaneAsBezier'>
Traceback (most recent call last):
  File "/media/cpvrlab/Ubuntu/BezierLaneNet/pytorch-auto-drive/main_landet.py", line 75, in <module>
    runner = Runner(cfg=cfg)
  File "/media/cpvrlab/Ubuntu/BezierLaneNet/pytorch-auto-drive/utils/runners/lane_det_tester.py", line 22, in __init__
    super().__init__(cfg)
  File "/media/cpvrlab/Ubuntu/BezierLaneNet/pytorch-auto-drive/utils/runners/base.py", line 222, in __init__
    dataset = DATASETS.from_dict(cfg['test_dataset'] if 'test_dataset' in cfg.keys() else cfg['dataset'],
  File "/media/cpvrlab/Ubuntu/BezierLaneNet/pytorch-auto-drive/utils/registry.py", line 41, in from_dict
    raise e
  File "/media/cpvrlab/Ubuntu/BezierLaneNet/pytorch-auto-drive/utils/registry.py", line 38, in from_dict
    return function_or_class(**dict_params_)
  File "/media/cpvrlab/Ubuntu/BezierLaneNet/pytorch-auto-drive/utils/datasets/lane_as_bezier.py", line 39, in __init__
    self._init_all()
  File "/media/cpvrlab/Ubuntu/BezierLaneNet/pytorch-auto-drive/utils/datasets/lane_as_bezier.py", line 89, in _init_all
    with open(split_f, "r") as f:
FileNotFoundError: [Errno 2] No such file or directory: '../../dataset/culane/lists/test.txt'

Also, how am i supposed to pass an image to the inferenced model? I can't find a reference to any image path in the invoked code.
I don't want to train the model, I want to inference a fully trained one, proof of concept.

I would be very happy about your feedback.

Metadata

Metadata

Assignees

No one assigned

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions